R
↳Dependency Pair Analysis
MINUS(x, s(y)) -> PRED(minus(x, y))
MINUS(x, s(y)) -> MINUS(x, y)
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x), s(y)) -> MINUS(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
MINUS(x, s(y)) -> MINUS(x, y)
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
one new Dependency Pair is created:
MINUS(x, s(y)) -> MINUS(x, y)
MINUS(x'', s(s(y''))) -> MINUS(x'', s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳Forward Instantiation Transformation
→DP Problem 2
↳Nar
MINUS(x'', s(s(y''))) -> MINUS(x'', s(y''))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
one new Dependency Pair is created:
MINUS(x'', s(s(y''))) -> MINUS(x'', s(y''))
MINUS(x'''', s(s(s(y'''')))) -> MINUS(x'''', s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 2
↳Nar
MINUS(x'''', s(s(s(y'''')))) -> MINUS(x'''', s(s(y'''')))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
MINUS(x'''', s(s(s(y'''')))) -> MINUS(x'''', s(s(y'''')))
POL(MINUS(x1, x2)) = 1 + x1 + x2 POL(s(x1)) = 1 + x1
MINUS(x1, x2) -> MINUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 3
↳FwdInst
...
→DP Problem 5
↳Dependency Graph
→DP Problem 2
↳Nar
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Narrowing Transformation
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
two new Dependency Pairs are created:
QUOT(s(x), s(y)) -> QUOT(minus(x, y), s(y))
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(x''), s(s(y''))) -> QUOT(pred(minus(x'', y'')), s(s(y'')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳Forward Instantiation Transformation
→DP Problem 7
↳Nar
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
one new Dependency Pair is created:
QUOT(s(x''), s(0)) -> QUOT(x'', s(0))
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 8
↳Argument Filtering and Ordering
→DP Problem 7
↳Nar
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
QUOT(s(s(x'''')), s(0)) -> QUOT(s(x''''), s(0))
POL(QUOT(x1, x2)) = 1 + x1 + x2 POL(0) = 0 POL(s(x1)) = 1 + x1
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
...
→DP Problem 11
↳Dependency Graph
→DP Problem 7
↳Nar
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
→DP Problem 7
↳Narrowing Transformation
QUOT(s(x''), s(s(y''))) -> QUOT(pred(minus(x'', y'')), s(s(y'')))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
two new Dependency Pairs are created:
QUOT(s(x''), s(s(y''))) -> QUOT(pred(minus(x'', y'')), s(s(y'')))
QUOT(s(x'''), s(s(0))) -> QUOT(pred(x'''), s(s(0)))
QUOT(s(x'''), s(s(s(y')))) -> QUOT(pred(pred(minus(x''', y'))), s(s(s(y'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
→DP Problem 7
↳Nar
...
→DP Problem 9
↳Argument Filtering and Ordering
QUOT(s(x'''), s(s(0))) -> QUOT(pred(x'''), s(s(0)))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
QUOT(s(x'''), s(s(0))) -> QUOT(pred(x'''), s(s(0)))
pred(s(x)) -> x
POL(QUOT(x1, x2)) = x1 + x2 POL(0) = 0 POL(pred(x1)) = x1 POL(s(x1)) = 1 + x1
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)
pred(x1) -> pred(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Nar
→DP Problem 6
↳FwdInst
→DP Problem 7
↳Nar
...
→DP Problem 10
↳Argument Filtering and Ordering
QUOT(s(x'''), s(s(s(y')))) -> QUOT(pred(pred(minus(x''', y'))), s(s(s(y'))))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
quot(0, s(y)) -> 0
quot(s(x), s(y)) -> s(quot(minus(x, y), s(y)))
innermost
QUOT(s(x'''), s(s(s(y')))) -> QUOT(pred(pred(minus(x''', y'))), s(s(s(y'))))
pred(s(x)) -> x
minus(x, 0) -> x
minus(x, s(y)) -> pred(minus(x, y))
POL(QUOT(x1, x2)) = x1 + x2 POL(pred(x1)) = x1 POL(s(x1)) = 1 + x1
QUOT(x1, x2) -> QUOT(x1, x2)
s(x1) -> s(x1)
pred(x1) -> pred(x1)
minus(x1, x2) -> x1