Term Rewriting System R:
[x, y, z]
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z))

Innermost Termination of R to be shown.

`   R`
`     ↳Dependency Pair Analysis`

R contains the following Dependency Pairs:

MINUS(s(x), s(y)) -> MINUS(x, y)
DOUBLE(s(x)) -> DOUBLE(x)
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(x), y) -> PLUS(x, s(y))
PLUS(s(x), y) -> PLUS(minus(x, y), double(y))
PLUS(s(x), y) -> MINUS(x, y)
PLUS(s(x), y) -> DOUBLE(y)
PLUS(s(plus(x, y)), z) -> PLUS(plus(x, y), z)

Furthermore, R contains three SCCs.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polynomial Ordering`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

MINUS(s(x), s(y)) -> MINUS(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z))

Strategy:

innermost

The following dependency pair can be strictly oriented:

MINUS(s(x), s(y)) -> MINUS(x, y)

There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(MINUS(x1, x2)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`           →DP Problem 4`
`             ↳Dependency Graph`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polynomial Ordering`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

DOUBLE(s(x)) -> DOUBLE(x)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z))

Strategy:

innermost

The following dependency pair can be strictly oriented:

DOUBLE(s(x)) -> DOUBLE(x)

There are no usable rules for innermost that need to be oriented.

Used ordering: Polynomial ordering with Polynomial interpretation:
 POL(DOUBLE(x1)) =  x1 POL(s(x1)) =  1 + x1

resulting in one new DP problem.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`           →DP Problem 5`
`             ↳Dependency Graph`
`       →DP Problem 3`
`         ↳Remaining`

Dependency Pair:

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z))

Strategy:

innermost

Using the Dependency Graph resulted in no new DP problems.

`   R`
`     ↳DPs`
`       →DP Problem 1`
`         ↳Polo`
`       →DP Problem 2`
`         ↳Polo`
`       →DP Problem 3`
`         ↳Remaining Obligation(s)`

The following remains to be proven:
Dependency Pairs:

PLUS(s(x), y) -> PLUS(minus(x, y), double(y))
PLUS(s(x), y) -> PLUS(x, s(y))
PLUS(s(x), y) -> PLUS(x, y)

Rules:

minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
plus(s(plus(x, y)), z) -> s(plus(plus(x, y), z))

Strategy:

innermost

Innermost Termination of R could not be shown.
Duration:
0:00 minutes