R
↳Dependency Pair Analysis
MINUS(s(x), s(y)) -> MINUS(x, y)
DOUBLE(s(x)) -> DOUBLE(x)
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(x), y) -> PLUS(x, s(y))
PLUS(s(x), y) -> PLUS(minus(x, y), double(y))
PLUS(s(x), y) -> MINUS(x, y)
PLUS(s(x), y) -> DOUBLE(y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
MINUS(s(x), s(y)) -> MINUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
one new Dependency Pair is created:
MINUS(s(x), s(y)) -> MINUS(x, y)
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
one new Dependency Pair is created:
MINUS(s(s(x'')), s(s(y''))) -> MINUS(s(x''), s(y''))
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 5
↳Polynomial Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
MINUS(s(s(s(x''''))), s(s(s(y'''')))) -> MINUS(s(s(x'''')), s(s(y'''')))
POL(MINUS(x1, x2)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 4
↳FwdInst
...
→DP Problem 6
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
DOUBLE(s(x)) -> DOUBLE(x)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
one new Dependency Pair is created:
DOUBLE(s(x)) -> DOUBLE(x)
DOUBLE(s(s(x''))) -> DOUBLE(s(x''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳Forward Instantiation Transformation
→DP Problem 3
↳Nar
DOUBLE(s(s(x''))) -> DOUBLE(s(x''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
one new Dependency Pair is created:
DOUBLE(s(s(x''))) -> DOUBLE(s(x''))
DOUBLE(s(s(s(x'''')))) -> DOUBLE(s(s(x'''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 8
↳Polynomial Ordering
→DP Problem 3
↳Nar
DOUBLE(s(s(s(x'''')))) -> DOUBLE(s(s(x'''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
DOUBLE(s(s(s(x'''')))) -> DOUBLE(s(s(x'''')))
POL(DOUBLE(x1)) = 1 + x1 POL(s(x1)) = 1 + x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 7
↳FwdInst
...
→DP Problem 9
↳Dependency Graph
→DP Problem 3
↳Nar
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Narrowing Transformation
PLUS(s(x), y) -> PLUS(minus(x, y), double(y))
PLUS(s(x), y) -> PLUS(x, s(y))
PLUS(s(x), y) -> PLUS(x, y)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
four new Dependency Pairs are created:
PLUS(s(x), y) -> PLUS(minus(x, y), double(y))
PLUS(s(x''), 0) -> PLUS(x'', double(0))
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), double(s(y'')))
PLUS(s(x), 0) -> PLUS(minus(x, 0), 0)
PLUS(s(x), s(x'')) -> PLUS(minus(x, s(x'')), s(s(double(x''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rewriting Transformation
PLUS(s(x), s(x'')) -> PLUS(minus(x, s(x'')), s(s(double(x''))))
PLUS(s(x), 0) -> PLUS(minus(x, 0), 0)
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), double(s(y'')))
PLUS(s(x''), 0) -> PLUS(x'', double(0))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(x), y) -> PLUS(x, s(y))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
one new Dependency Pair is created:
PLUS(s(x''), 0) -> PLUS(x'', double(0))
PLUS(s(x''), 0) -> PLUS(x'', 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 11
↳Rewriting Transformation
PLUS(s(x''), 0) -> PLUS(x'', 0)
PLUS(s(x), 0) -> PLUS(minus(x, 0), 0)
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), double(s(y'')))
PLUS(s(x), y) -> PLUS(x, s(y))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(x), s(x'')) -> PLUS(minus(x, s(x'')), s(s(double(x''))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
one new Dependency Pair is created:
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), double(s(y'')))
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), s(s(double(y''))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 12
↳Rewriting Transformation
PLUS(s(x), 0) -> PLUS(minus(x, 0), 0)
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), s(s(double(y''))))
PLUS(s(x), s(x'')) -> PLUS(minus(x, s(x'')), s(s(double(x''))))
PLUS(s(x), y) -> PLUS(x, s(y))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(x''), 0) -> PLUS(x'', 0)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
one new Dependency Pair is created:
PLUS(s(x), 0) -> PLUS(minus(x, 0), 0)
PLUS(s(x), 0) -> PLUS(x, 0)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 13
↳Narrowing Transformation
PLUS(s(x), 0) -> PLUS(x, 0)
PLUS(s(x''), 0) -> PLUS(x'', 0)
PLUS(s(x), s(x'')) -> PLUS(minus(x, s(x'')), s(s(double(x''))))
PLUS(s(x), y) -> PLUS(x, s(y))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), s(s(double(y''))))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
three new Dependency Pairs are created:
PLUS(s(x), s(x'')) -> PLUS(minus(x, s(x'')), s(s(double(x''))))
PLUS(s(s(x'0)), s(x''')) -> PLUS(minus(x'0, x'''), s(s(double(x'''))))
PLUS(s(x), s(0)) -> PLUS(minus(x, s(0)), s(s(0)))
PLUS(s(x), s(s(x'''))) -> PLUS(minus(x, s(s(x'''))), s(s(s(s(double(x'''))))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 14
↳Forward Instantiation Transformation
PLUS(s(x''), 0) -> PLUS(x'', 0)
PLUS(s(x), s(0)) -> PLUS(minus(x, s(0)), s(s(0)))
PLUS(s(x), s(s(x'''))) -> PLUS(minus(x, s(s(x'''))), s(s(s(s(double(x'''))))))
PLUS(s(s(x'0)), s(x''')) -> PLUS(minus(x'0, x'''), s(s(double(x'''))))
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), s(s(double(y''))))
PLUS(s(x), y) -> PLUS(x, s(y))
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(x), 0) -> PLUS(x, 0)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
seven new Dependency Pairs are created:
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), 0)
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(s(x'')), s(0)) -> PLUS(s(x''), s(0))
PLUS(s(s(x'')), s(s(x'''''))) -> PLUS(s(x''), s(s(x''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 15
↳Forward Instantiation Transformation
PLUS(s(s(x'')), s(s(x'''''))) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(x'')), s(0)) -> PLUS(s(x''), s(0))
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(x), s(0)) -> PLUS(minus(x, s(0)), s(s(0)))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), 0)
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(x), 0) -> PLUS(x, 0)
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
PLUS(s(x), s(s(x'''))) -> PLUS(minus(x, s(s(x'''))), s(s(s(s(double(x'''))))))
PLUS(s(s(x'0)), s(x''')) -> PLUS(minus(x'0, x'''), s(s(double(x'''))))
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), s(s(double(y''))))
PLUS(s(x), y) -> PLUS(x, s(y))
PLUS(s(x''), 0) -> PLUS(x'', 0)
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
nine new Dependency Pairs are created:
PLUS(s(x), y) -> PLUS(x, s(y))
PLUS(s(s(x'')), y'') -> PLUS(s(x''), s(y''))
PLUS(s(s(s(x''''))), y') -> PLUS(s(s(x'''')), s(y'))
PLUS(s(s(s(x'0''))), y') -> PLUS(s(s(x'0'')), s(y'))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), s(0))
PLUS(s(s(x'')), s(x''''')) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(s(s(x'''''')))), y') -> PLUS(s(s(s(x''''''))), s(y'))
PLUS(s(s(s(s(x'0'''')))), y') -> PLUS(s(s(s(x'0''''))), s(y'))
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(s(x''''''')))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 16
↳Forward Instantiation Transformation
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), s(0))
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(x'0'''')))), y') -> PLUS(s(s(s(x'0''''))), s(y'))
PLUS(s(s(s(s(x'''''')))), y') -> PLUS(s(s(s(x''''''))), s(y'))
PLUS(s(s(x'')), s(x''''')) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(s(x'0''))), y') -> PLUS(s(s(x'0'')), s(y'))
PLUS(s(s(s(x''''))), y') -> PLUS(s(s(x'''')), s(y'))
PLUS(s(s(x'')), s(0)) -> PLUS(s(x''), s(0))
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(x), s(0)) -> PLUS(minus(x, s(0)), s(s(0)))
PLUS(s(s(x'')), y'') -> PLUS(s(x''), s(y''))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), 0)
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(x), 0) -> PLUS(x, 0)
PLUS(s(x''), 0) -> PLUS(x'', 0)
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
PLUS(s(x), s(s(x'''))) -> PLUS(minus(x, s(s(x'''))), s(s(s(s(double(x'''))))))
PLUS(s(s(x'0)), s(x''')) -> PLUS(minus(x'0, x'''), s(s(double(x'''))))
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), s(s(double(y''))))
PLUS(s(s(x'')), s(s(x'''''))) -> PLUS(s(x''), s(s(x''''')))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
20 new Dependency Pairs are created:
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(s(x''')), 0) -> PLUS(s(x'''), 0)
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(s(x''')), s(0)) -> PLUS(s(x'''), s(0))
PLUS(s(s(x''')), s(s(x'''''))) -> PLUS(s(x'''), s(s(x''''')))
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
PLUS(s(s(s(x''''''))), 0) -> PLUS(s(s(x'''''')), 0)
PLUS(s(s(s(s(x'''''')))), s(y'''''')) -> PLUS(s(s(s(x''''''))), s(y''''''))
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), 0)
PLUS(s(s(s(s(x'0'''')))), s(x''''''')) -> PLUS(s(s(s(x'0''''))), s(x'''''''))
PLUS(s(s(s(x''''))), s(0)) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(s(x''''))), s(s(x'''''''))) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(x'''''')))), y'''') -> PLUS(s(s(s(x''''''))), y'''')
PLUS(s(s(s(s(x'0'''')))), y'''') -> PLUS(s(s(s(x'0''''))), y'''')
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(x'''''''))
PLUS(s(s(s(s(s(x''''''''))))), y'''') -> PLUS(s(s(s(s(x'''''''')))), y'''')
PLUS(s(s(s(s(s(x'0''''''))))), y'''') -> PLUS(s(s(s(s(x'0'''''')))), y'''')
PLUS(s(s(s(s(x'''''')))), 0) -> PLUS(s(s(s(x''''''))), 0)
PLUS(s(s(s(s(x'''''')))), s(x''''''''')) -> PLUS(s(s(s(x''''''))), s(x'''''''''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 17
↳Forward Instantiation Transformation
PLUS(s(s(s(s(x'''''')))), s(x''''''''')) -> PLUS(s(s(s(x''''''))), s(x'''''''''))
PLUS(s(s(s(s(x'''''')))), 0) -> PLUS(s(s(s(x''''''))), 0)
PLUS(s(s(s(s(s(x'0''''''))))), y'''') -> PLUS(s(s(s(s(x'0'''''')))), y'''')
PLUS(s(s(s(s(s(x''''''''))))), y'''') -> PLUS(s(s(s(s(x'''''''')))), y'''')
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(x'''''''))
PLUS(s(s(s(x''''))), s(s(x'''''''))) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(x'0'''')))), y'''') -> PLUS(s(s(s(x'0''''))), y'''')
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), 0)
PLUS(s(s(s(x''''''))), 0) -> PLUS(s(s(x'''''')), 0)
PLUS(s(s(x''')), 0) -> PLUS(s(x'''), 0)
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(s(s(s(x'''''')))), y'''') -> PLUS(s(s(s(x''''''))), y'''')
PLUS(s(s(s(x''''))), s(0)) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(s(s(x'0'''')))), s(x''''''')) -> PLUS(s(s(s(x'0''''))), s(x'''''''))
PLUS(s(s(x''')), s(s(x'''''))) -> PLUS(s(x'''), s(s(x''''')))
PLUS(s(s(s(s(x'''''')))), s(y'''''')) -> PLUS(s(s(s(x''''''))), s(y''''''))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), s(0))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), 0)
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(x), 0) -> PLUS(x, 0)
PLUS(s(x''), 0) -> PLUS(x'', 0)
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
PLUS(s(s(x''')), s(0)) -> PLUS(s(x'''), s(0))
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(x'0'''')))), y') -> PLUS(s(s(s(x'0''''))), s(y'))
PLUS(s(s(s(s(x'''''')))), y') -> PLUS(s(s(s(x''''''))), s(y'))
PLUS(s(s(x'')), s(x''''')) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(s(x'0''))), y') -> PLUS(s(s(x'0'')), s(y'))
PLUS(s(s(s(x''''))), y') -> PLUS(s(s(x'''')), s(y'))
PLUS(s(s(x'')), s(s(x'''''))) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(x'')), y'') -> PLUS(s(x''), s(y''))
PLUS(s(s(x'')), s(0)) -> PLUS(s(x''), s(0))
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(x), s(0)) -> PLUS(minus(x, s(0)), s(s(0)))
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(x), s(s(x'''))) -> PLUS(minus(x, s(s(x'''))), s(s(s(s(double(x'''))))))
PLUS(s(s(x'0)), s(x''')) -> PLUS(minus(x'0, x'''), s(s(double(x'''))))
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), s(s(double(y''))))
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), s(0))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
21 new Dependency Pairs are created:
PLUS(s(s(x'')), y'') -> PLUS(s(x''), s(y''))
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(s(s(x'0''))), y''') -> PLUS(s(s(x'0'')), s(y'''))
PLUS(s(s(x''')), 0) -> PLUS(s(x'''), s(0))
PLUS(s(s(x''')), s(x''''')) -> PLUS(s(x'''), s(s(x''''')))
PLUS(s(s(s(s(x'''''')))), y''') -> PLUS(s(s(s(x''''''))), s(y'''))
PLUS(s(s(s(s(x'0'''')))), y''') -> PLUS(s(s(s(x'0''''))), s(y'''))
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(x'''''')))), y'''') -> PLUS(s(s(s(x''''''))), s(y''''))
PLUS(s(s(s(s(x'0'''')))), y'''') -> PLUS(s(s(s(x'0''''))), s(y''''))
PLUS(s(s(s(x''''))), y''') -> PLUS(s(s(x'''')), s(y'''))
PLUS(s(s(s(s(s(x''''''''))))), y'''') -> PLUS(s(s(s(s(x'''''''')))), s(y''''))
PLUS(s(s(s(s(s(x'0''''''))))), y'''') -> PLUS(s(s(s(s(x'0'''''')))), s(y''''))
PLUS(s(s(s(x'''''))), 0) -> PLUS(s(s(x''''')), s(0))
PLUS(s(s(s(x'''''))), s(x''''''')) -> PLUS(s(s(x''''')), s(s(x''''''')))
PLUS(s(s(s(s(s(x''''''''))))), y''') -> PLUS(s(s(s(s(x'''''''')))), s(y'''))
PLUS(s(s(s(s(s(x'0''''''))))), y''') -> PLUS(s(s(s(s(x'0'''''')))), s(y'''))
PLUS(s(s(s(s(x'''''')))), 0) -> PLUS(s(s(s(x''''''))), s(0))
PLUS(s(s(s(s(x'''''')))), s(x''''''''')) -> PLUS(s(s(s(x''''''))), s(s(x''''''''')))
PLUS(s(s(s(s(s(s(x'''''''''')))))), y''') -> PLUS(s(s(s(s(s(x''''''''''))))), s(y'''))
PLUS(s(s(s(s(s(s(x'0'''''''')))))), y''') -> PLUS(s(s(s(s(s(x'0''''''''))))), s(y'''))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 18
↳Polynomial Ordering
PLUS(s(s(s(s(x'''''')))), 0) -> PLUS(s(s(s(x''''''))), s(0))
PLUS(s(s(s(x'''''))), 0) -> PLUS(s(s(x''''')), s(0))
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(x''')), 0) -> PLUS(s(x'''), s(0))
PLUS(s(s(s(s(s(s(x'0'''''''')))))), y''') -> PLUS(s(s(s(s(s(x'0''''''''))))), s(y'''))
PLUS(s(s(s(s(s(s(x'''''''''')))))), y''') -> PLUS(s(s(s(s(s(x''''''''''))))), s(y'''))
PLUS(s(s(s(s(x'''''')))), s(x''''''''')) -> PLUS(s(s(s(x''''''))), s(s(x''''''''')))
PLUS(s(s(s(s(s(x'0''''''))))), y''') -> PLUS(s(s(s(s(x'0'''''')))), s(y'''))
PLUS(s(s(s(s(s(x''''''''))))), y''') -> PLUS(s(s(s(s(x'''''''')))), s(y'''))
PLUS(s(s(s(x'''''))), s(x''''''')) -> PLUS(s(s(x''''')), s(s(x''''''')))
PLUS(s(s(s(s(s(x'0''''''))))), y'''') -> PLUS(s(s(s(s(x'0'''''')))), s(y''''))
PLUS(s(s(s(s(s(x''''''''))))), y'''') -> PLUS(s(s(s(s(x'''''''')))), s(y''''))
PLUS(s(s(s(x''''))), y''') -> PLUS(s(s(x'''')), s(y'''))
PLUS(s(s(s(s(x'0'''')))), y'''') -> PLUS(s(s(s(x'0''''))), s(y''''))
PLUS(s(s(s(s(x'''''')))), y'''') -> PLUS(s(s(s(x''''''))), s(y''''))
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(x'0'''')))), y''') -> PLUS(s(s(s(x'0''''))), s(y'''))
PLUS(s(s(s(s(x'''''')))), y''') -> PLUS(s(s(s(x''''''))), s(y'''))
PLUS(s(s(x''')), s(x''''')) -> PLUS(s(x'''), s(s(x''''')))
PLUS(s(s(s(x'0''))), y''') -> PLUS(s(s(x'0'')), s(y'''))
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(s(s(s(x'''''')))), 0) -> PLUS(s(s(s(x''''''))), 0)
PLUS(s(s(s(s(s(x'0''''''))))), y'''') -> PLUS(s(s(s(s(x'0'''''')))), y'''')
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(x'''''''))
PLUS(s(s(s(x''''))), s(s(x'''''''))) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(s(x''''''''))))), y'''') -> PLUS(s(s(s(s(x'''''''')))), y'''')
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), 0)
PLUS(s(s(s(x''''''))), 0) -> PLUS(s(s(x'''''')), 0)
PLUS(s(s(x''')), 0) -> PLUS(s(x'''), 0)
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(s(s(s(x'0'''')))), y'''') -> PLUS(s(s(s(x'0''''))), y'''')
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(s(s(x'''''')))), y'''') -> PLUS(s(s(s(x''''''))), y'''')
PLUS(s(s(s(x''''))), s(0)) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(s(s(x'0'''')))), s(x''''''')) -> PLUS(s(s(s(x'0''''))), s(x'''''''))
PLUS(s(s(x''')), s(s(x'''''))) -> PLUS(s(x'''), s(s(x''''')))
PLUS(s(s(s(s(x'''''')))), s(y'''''')) -> PLUS(s(s(s(x''''''))), s(y''''''))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), s(0))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), 0)
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(x), 0) -> PLUS(x, 0)
PLUS(s(x''), 0) -> PLUS(x'', 0)
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
PLUS(s(s(x''')), s(0)) -> PLUS(s(x'''), s(0))
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(x'0'''')))), y') -> PLUS(s(s(s(x'0''''))), s(y'))
PLUS(s(s(s(s(x'''''')))), y') -> PLUS(s(s(s(x''''''))), s(y'))
PLUS(s(s(x'')), s(x''''')) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(s(x'0''))), y') -> PLUS(s(s(x'0'')), s(y'))
PLUS(s(s(x'')), s(s(x'''''))) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(s(x''''))), y') -> PLUS(s(s(x'''')), s(y'))
PLUS(s(s(x'')), s(0)) -> PLUS(s(x''), s(0))
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(x), s(0)) -> PLUS(minus(x, s(0)), s(s(0)))
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(x), s(s(x'''))) -> PLUS(minus(x, s(s(x'''))), s(s(s(s(double(x'''))))))
PLUS(s(s(x'0)), s(x''')) -> PLUS(minus(x'0, x'''), s(s(double(x'''))))
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), s(s(double(y''))))
PLUS(s(s(s(s(x'''''')))), s(x''''''''')) -> PLUS(s(s(s(x''''''))), s(x'''''''''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
PLUS(s(s(s(s(x'''''')))), 0) -> PLUS(s(s(s(x''''''))), s(0))
PLUS(s(s(s(x'''''))), 0) -> PLUS(s(s(x''''')), s(0))
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(x''')), 0) -> PLUS(s(x'''), s(0))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), s(0))
POL(PLUS(x1, x2)) = x2 POL(0) = 1 POL(minus(x1, x2)) = 0 POL(s(x1)) = 0 POL(double(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 19
↳Polynomial Ordering
PLUS(s(s(s(s(s(s(x'0'''''''')))))), y''') -> PLUS(s(s(s(s(s(x'0''''''''))))), s(y'''))
PLUS(s(s(s(s(s(s(x'''''''''')))))), y''') -> PLUS(s(s(s(s(s(x''''''''''))))), s(y'''))
PLUS(s(s(s(s(x'''''')))), s(x''''''''')) -> PLUS(s(s(s(x''''''))), s(s(x''''''''')))
PLUS(s(s(s(s(s(x'0''''''))))), y''') -> PLUS(s(s(s(s(x'0'''''')))), s(y'''))
PLUS(s(s(s(s(s(x''''''''))))), y''') -> PLUS(s(s(s(s(x'''''''')))), s(y'''))
PLUS(s(s(s(x'''''))), s(x''''''')) -> PLUS(s(s(x''''')), s(s(x''''''')))
PLUS(s(s(s(s(s(x'0''''''))))), y'''') -> PLUS(s(s(s(s(x'0'''''')))), s(y''''))
PLUS(s(s(s(s(s(x''''''''))))), y'''') -> PLUS(s(s(s(s(x'''''''')))), s(y''''))
PLUS(s(s(s(x''''))), y''') -> PLUS(s(s(x'''')), s(y'''))
PLUS(s(s(s(s(x'0'''')))), y'''') -> PLUS(s(s(s(x'0''''))), s(y''''))
PLUS(s(s(s(s(x'''''')))), y'''') -> PLUS(s(s(s(x''''''))), s(y''''))
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(x'0'''')))), y''') -> PLUS(s(s(s(x'0''''))), s(y'''))
PLUS(s(s(s(s(x'''''')))), y''') -> PLUS(s(s(s(x''''''))), s(y'''))
PLUS(s(s(x''')), s(x''''')) -> PLUS(s(x'''), s(s(x''''')))
PLUS(s(s(s(x'0''))), y''') -> PLUS(s(s(x'0'')), s(y'''))
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(s(s(s(x'''''')))), 0) -> PLUS(s(s(s(x''''''))), 0)
PLUS(s(s(s(s(s(x'0''''''))))), y'''') -> PLUS(s(s(s(s(x'0'''''')))), y'''')
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(x'''''''))
PLUS(s(s(s(x''''))), s(s(x'''''''))) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(s(x''''''''))))), y'''') -> PLUS(s(s(s(s(x'''''''')))), y'''')
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), 0)
PLUS(s(s(s(x''''''))), 0) -> PLUS(s(s(x'''''')), 0)
PLUS(s(s(x''')), 0) -> PLUS(s(x'''), 0)
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(s(s(s(x'0'''')))), y'''') -> PLUS(s(s(s(x'0''''))), y'''')
PLUS(s(s(s(s(x'''''')))), y'''') -> PLUS(s(s(s(x''''''))), y'''')
PLUS(s(s(s(x''''))), s(0)) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(s(s(x'0'''')))), s(x''''''')) -> PLUS(s(s(s(x'0''''))), s(x'''''''))
PLUS(s(s(x''')), s(s(x'''''))) -> PLUS(s(x'''), s(s(x''''')))
PLUS(s(s(s(s(x'''''')))), s(y'''''')) -> PLUS(s(s(s(x''''''))), s(y''''''))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), 0)
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(x), 0) -> PLUS(x, 0)
PLUS(s(x''), 0) -> PLUS(x'', 0)
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
PLUS(s(s(x''')), s(0)) -> PLUS(s(x'''), s(0))
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(x'0'''')))), y') -> PLUS(s(s(s(x'0''''))), s(y'))
PLUS(s(s(s(s(x'''''')))), y') -> PLUS(s(s(s(x''''''))), s(y'))
PLUS(s(s(x'')), s(x''''')) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(s(x'0''))), y') -> PLUS(s(s(x'0'')), s(y'))
PLUS(s(s(x'')), s(s(x'''''))) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(s(x''''))), y') -> PLUS(s(s(x'''')), s(y'))
PLUS(s(s(x'')), s(0)) -> PLUS(s(x''), s(0))
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(x), s(0)) -> PLUS(minus(x, s(0)), s(s(0)))
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(x), s(s(x'''))) -> PLUS(minus(x, s(s(x'''))), s(s(s(s(double(x'''))))))
PLUS(s(s(x'0)), s(x''')) -> PLUS(minus(x'0, x'''), s(s(double(x'''))))
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), s(s(double(y''))))
PLUS(s(s(s(s(x'''''')))), s(x''''''''')) -> PLUS(s(s(s(x''''''))), s(x'''''''''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost
PLUS(s(s(s(s(s(s(x'0'''''''')))))), y''') -> PLUS(s(s(s(s(s(x'0''''''''))))), s(y'''))
PLUS(s(s(s(s(s(s(x'''''''''')))))), y''') -> PLUS(s(s(s(s(s(x''''''''''))))), s(y'''))
PLUS(s(s(s(s(x'''''')))), s(x''''''''')) -> PLUS(s(s(s(x''''''))), s(s(x''''''''')))
PLUS(s(s(s(s(s(x'0''''''))))), y''') -> PLUS(s(s(s(s(x'0'''''')))), s(y'''))
PLUS(s(s(s(s(s(x''''''''))))), y''') -> PLUS(s(s(s(s(x'''''''')))), s(y'''))
PLUS(s(s(s(x'''''))), s(x''''''')) -> PLUS(s(s(x''''')), s(s(x''''''')))
PLUS(s(s(s(s(s(x'0''''''))))), y'''') -> PLUS(s(s(s(s(x'0'''''')))), s(y''''))
PLUS(s(s(s(s(s(x''''''''))))), y'''') -> PLUS(s(s(s(s(x'''''''')))), s(y''''))
PLUS(s(s(s(x''''))), y''') -> PLUS(s(s(x'''')), s(y'''))
PLUS(s(s(s(s(x'0'''')))), y'''') -> PLUS(s(s(s(x'0''''))), s(y''''))
PLUS(s(s(s(s(x'''''')))), y'''') -> PLUS(s(s(s(x''''''))), s(y''''))
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(x'0'''')))), y''') -> PLUS(s(s(s(x'0''''))), s(y'''))
PLUS(s(s(s(s(x'''''')))), y''') -> PLUS(s(s(s(x''''''))), s(y'''))
PLUS(s(s(x''')), s(x''''')) -> PLUS(s(x'''), s(s(x''''')))
PLUS(s(s(s(x'0''))), y''') -> PLUS(s(s(x'0'')), s(y'''))
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(s(s(s(x'''''')))), 0) -> PLUS(s(s(s(x''''''))), 0)
PLUS(s(s(s(s(s(x'0''''''))))), y'''') -> PLUS(s(s(s(s(x'0'''''')))), y'''')
PLUS(s(s(s(x''''))), s(x''''''')) -> PLUS(s(s(x'''')), s(x'''''''))
PLUS(s(s(s(x''''))), s(s(x'''''''))) -> PLUS(s(s(x'''')), s(s(x''''''')))
PLUS(s(s(s(s(s(x''''''''))))), y'''') -> PLUS(s(s(s(s(x'''''''')))), y'''')
PLUS(s(s(s(x''''))), 0) -> PLUS(s(s(x'''')), 0)
PLUS(s(s(s(x''''''))), 0) -> PLUS(s(s(x'''''')), 0)
PLUS(s(s(x''')), 0) -> PLUS(s(x'''), 0)
PLUS(s(s(x'''')), 0) -> PLUS(s(x''''), 0)
PLUS(s(s(s(s(x'0'''')))), y'''') -> PLUS(s(s(s(x'0''''))), y'''')
PLUS(s(s(s(s(x'''''')))), y'''') -> PLUS(s(s(s(x''''''))), y'''')
PLUS(s(s(s(x''''))), s(0)) -> PLUS(s(s(x'''')), s(0))
PLUS(s(s(s(s(x'0'''')))), s(x''''''')) -> PLUS(s(s(s(x'0''''))), s(x'''''''))
PLUS(s(s(x''')), s(s(x'''''))) -> PLUS(s(x'''), s(s(x''''')))
PLUS(s(s(s(s(x'''''')))), s(y'''''')) -> PLUS(s(s(s(x''''''))), s(y''''''))
PLUS(s(s(x'')), 0) -> PLUS(s(x''), 0)
PLUS(s(x), 0) -> PLUS(x, 0)
PLUS(s(x''), 0) -> PLUS(x'', 0)
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
PLUS(s(s(x''')), s(0)) -> PLUS(s(x'''), s(0))
PLUS(s(s(s(x'0''))), s(x''''')) -> PLUS(s(s(x'0'')), s(x'''''))
PLUS(s(s(s(x''''))), s(y'''')) -> PLUS(s(s(x'''')), s(y''''))
PLUS(s(s(s(s(x'0'''')))), y') -> PLUS(s(s(s(x'0''''))), s(y'))
PLUS(s(s(s(s(x'''''')))), y') -> PLUS(s(s(s(x''''''))), s(y'))
PLUS(s(s(x'')), s(x''''')) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(s(x'0''))), y') -> PLUS(s(s(x'0'')), s(y'))
PLUS(s(s(x'')), s(s(x'''''))) -> PLUS(s(x''), s(s(x''''')))
PLUS(s(s(s(x''''))), y') -> PLUS(s(s(x'''')), s(y'))
PLUS(s(s(x'')), s(0)) -> PLUS(s(x''), s(0))
PLUS(s(x), s(0)) -> PLUS(minus(x, s(0)), s(s(0)))
PLUS(s(x), s(s(x'''))) -> PLUS(minus(x, s(s(x'''))), s(s(s(s(double(x'''))))))
PLUS(s(s(x'0)), s(x''')) -> PLUS(minus(x'0, x'''), s(s(double(x'''))))
PLUS(s(s(x'')), s(y'')) -> PLUS(minus(x'', y''), s(s(double(y''))))
PLUS(s(s(s(s(x'''''')))), s(x''''''''')) -> PLUS(s(s(s(x''''''))), s(x'''''''''))
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
POL(PLUS(x1, x2)) = 1 + x1 POL(0) = 0 POL(minus(x1, x2)) = x1 POL(s(x1)) = 1 + x1 POL(double(x1)) = 0
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Nar
→DP Problem 10
↳Rw
...
→DP Problem 20
↳Dependency Graph
minus(x, 0) -> x
minus(s(x), s(y)) -> minus(x, y)
double(0) -> 0
double(s(x)) -> s(s(double(x)))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> plus(x, s(y))
plus(s(x), y) -> s(plus(minus(x, y), double(y)))
innermost