R
↳Dependency Pair Analysis
APP(cons(x, l), k) -> APP(l, k)
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
SUM(cons(x, cons(y, l))) -> PLUS(x, y)
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
SUM(app(l, cons(x, cons(y, k)))) -> APP(l, sum(cons(x, cons(y, k))))
SUM(app(l, cons(x, cons(y, k)))) -> SUM(cons(x, cons(y, k)))
SUM(plus(cons(0, x), cons(y, l))) -> PRED(sum(cons(s(x), cons(y, l))))
SUM(plus(cons(0, x), cons(y, l))) -> SUM(cons(s(x), cons(y, l)))
PLUS(s(x), y) -> PLUS(x, y)
R
↳DPs
→DP Problem 1
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
APP(cons(x, l), k) -> APP(l, k)
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
one new Dependency Pair is created:
APP(cons(x, l), k) -> APP(l, k)
APP(cons(x, cons(x'', l'')), k'') -> APP(cons(x'', l''), k'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳Forward Instantiation Transformation
→DP Problem 2
↳FwdInst
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
APP(cons(x, cons(x'', l'')), k'') -> APP(cons(x'', l''), k'')
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
one new Dependency Pair is created:
APP(cons(x, cons(x'', l'')), k'') -> APP(cons(x'', l''), k'')
APP(cons(x, cons(x'''', cons(x''''', l''''))), k'''') -> APP(cons(x'''', cons(x''''', l'''')), k'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 6
↳Argument Filtering and Ordering
→DP Problem 2
↳FwdInst
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
APP(cons(x, cons(x'''', cons(x''''', l''''))), k'''') -> APP(cons(x'''', cons(x''''', l'''')), k'''')
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
APP(cons(x, cons(x'''', cons(x''''', l''''))), k'''') -> APP(cons(x'''', cons(x''''', l'''')), k'''')
trivial
APP(x1, x2) -> APP(x1, x2)
cons(x1, x2) -> cons(x1, x2)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 5
↳FwdInst
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳FwdInst
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳Forward Instantiation Transformation
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
PLUS(s(x), y) -> PLUS(x, y)
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
one new Dependency Pair is created:
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳Forward Instantiation Transformation
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
one new Dependency Pair is created:
PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 9
↳Argument Filtering and Ordering
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')
trivial
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 8
↳FwdInst
...
→DP Problem 10
↳Dependency Graph
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳Argument Filtering and Ordering
→DP Problem 4
↳Nar
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
trivial
SUM(x1) -> SUM(x1)
cons(x1, x2) -> cons(x1, x2)
plus(x1, x2) -> x2
s(x1) -> x1
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳AFS
→DP Problem 11
↳Dependency Graph
→DP Problem 4
↳Nar
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳AFS
→DP Problem 4
↳Narrowing Transformation
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
one new Dependency Pair is created:
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
SUM(app(l, cons(x'', cons(y'', k')))) -> SUM(app(l, sum(cons(plus(x'', y''), k'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
→DP Problem 12
↳Narrowing Transformation
SUM(app(l, cons(x'', cons(y'', k')))) -> SUM(app(l, sum(cons(plus(x'', y''), k'))))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
four new Dependency Pairs are created:
SUM(app(l, cons(x'', cons(y'', k')))) -> SUM(app(l, sum(cons(plus(x'', y''), k'))))
SUM(app(l, cons(x''', cons(y''', nil)))) -> SUM(app(l, cons(plus(x''', y'''), nil)))
SUM(app(l, cons(x''', cons(y''', cons(y', l''))))) -> SUM(app(l, sum(cons(plus(plus(x''', y'''), y'), l''))))
SUM(app(l, cons(0, cons(y''', k')))) -> SUM(app(l, sum(cons(y''', k'))))
SUM(app(l, cons(s(x'), cons(y''', k')))) -> SUM(app(l, sum(cons(s(plus(x', y''')), k'))))
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 13
↳Argument Filtering and Ordering
SUM(app(l, cons(s(x'), cons(y''', k')))) -> SUM(app(l, sum(cons(s(plus(x', y''')), k'))))
SUM(app(l, cons(0, cons(y''', k')))) -> SUM(app(l, sum(cons(y''', k'))))
SUM(app(l, cons(x''', cons(y''', cons(y', l''))))) -> SUM(app(l, sum(cons(plus(plus(x''', y'''), y'), l''))))
SUM(app(l, cons(x''', cons(y''', nil)))) -> SUM(app(l, cons(plus(x''', y'''), nil)))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost
SUM(app(l, cons(s(x'), cons(y''', k')))) -> SUM(app(l, sum(cons(s(plus(x', y''')), k'))))
SUM(app(l, cons(0, cons(y''', k')))) -> SUM(app(l, sum(cons(y''', k'))))
SUM(app(l, cons(x''', cons(y''', cons(y', l''))))) -> SUM(app(l, sum(cons(plus(plus(x''', y'''), y'), l''))))
SUM(app(l, cons(x''', cons(y''', nil)))) -> SUM(app(l, cons(plus(x''', y'''), nil)))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
app > cons
plus > pred
plus > cons
plus > s
SUM(x1) -> SUM(x1)
app(x1, x2) -> app(x1, x2)
cons(x1, x2) -> cons(x2)
sum(x1) -> x1
plus(x1, x2) -> plus(x1, x2)
pred(x1) -> pred(x1)
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳FwdInst
→DP Problem 2
↳FwdInst
→DP Problem 3
↳AFS
→DP Problem 4
↳Nar
→DP Problem 12
↳Nar
...
→DP Problem 14
↳Dependency Graph
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
sum(plus(cons(0, x), cons(y, l))) -> pred(sum(cons(s(x), cons(y, l))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
pred(cons(s(x), nil)) -> cons(x, nil)
innermost