Term Rewriting System R:
[k, l, x, y]
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(cons(x, l), k) -> APP(l, k)
SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))
SUM(cons(x, cons(y, l))) -> PLUS(x, y)
SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
SUM(app(l, cons(x, cons(y, k)))) -> APP(l, sum(cons(x, cons(y, k))))
SUM(app(l, cons(x, cons(y, k)))) -> SUM(cons(x, cons(y, k)))
PLUS(s(x), y) -> PLUS(x, y)

Furthermore, R contains four SCCs.


   R
DPs
       →DP Problem 1
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:

APP(cons(x, l), k) -> APP(l, k)


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

APP(cons(x, l), k) -> APP(l, k)
one new Dependency Pair is created:

APP(cons(x, cons(x'', l'')), k'') -> APP(cons(x'', l''), k'')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 5
Forward Instantiation Transformation
       →DP Problem 2
FwdInst
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:

APP(cons(x, cons(x'', l'')), k'') -> APP(cons(x'', l''), k'')


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

APP(cons(x, cons(x'', l'')), k'') -> APP(cons(x'', l''), k'')
one new Dependency Pair is created:

APP(cons(x, cons(x'''', cons(x''''', l''''))), k'''') -> APP(cons(x'''', cons(x''''', l'''')), k'''')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 5
FwdInst
             ...
               →DP Problem 6
Argument Filtering and Ordering
       →DP Problem 2
FwdInst
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:

APP(cons(x, cons(x'''', cons(x''''', l''''))), k'''') -> APP(cons(x'''', cons(x''''', l'''')), k'''')


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

APP(cons(x, cons(x'''', cons(x''''', l''''))), k'''') -> APP(cons(x'''', cons(x''''', l'''')), k'''')


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(APP(x1, x2))=  1 + x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
APP(x1, x2) -> APP(x1, x2)
cons(x1, x2) -> cons(x1, x2)


   R
DPs
       →DP Problem 1
FwdInst
           →DP Problem 5
FwdInst
             ...
               →DP Problem 7
Dependency Graph
       →DP Problem 2
FwdInst
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
Forward Instantiation Transformation
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:

PLUS(s(x), y) -> PLUS(x, y)


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

PLUS(s(x), y) -> PLUS(x, y)
one new Dependency Pair is created:

PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 8
Forward Instantiation Transformation
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:

PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




On this DP problem, a Forward Instantiation SCC transformation can be performed.
As a result of transforming the rule

PLUS(s(s(x'')), y'') -> PLUS(s(x''), y'')
one new Dependency Pair is created:

PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 8
FwdInst
             ...
               →DP Problem 9
Argument Filtering and Ordering
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:

PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

PLUS(s(s(s(x''''))), y'''') -> PLUS(s(s(x'''')), y'''')


There are no usable rules for innermost w.r.t. to the AFS that need to be oriented.
Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(PLUS(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  1 + x1  

resulting in one new DP problem.
Used Argument Filtering System:
PLUS(x1, x2) -> PLUS(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
           →DP Problem 8
FwdInst
             ...
               →DP Problem 10
Dependency Graph
       →DP Problem 3
AFS
       →DP Problem 4
Nar


Dependency Pair:


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
Argument Filtering and Ordering
       →DP Problem 4
Nar


Dependency Pair:

SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




The following dependency pair can be strictly oriented:

SUM(cons(x, cons(y, l))) -> SUM(cons(plus(x, y), l))


The following usable rules for innermost w.r.t. to the AFS can be oriented:

plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(plus(x1, x2))=  x1 + x2  
  POL(SUM(x1))=  1 + x1  
  POL(0)=  1  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(s(x1))=  x1  

resulting in one new DP problem.
Used Argument Filtering System:
SUM(x1) -> SUM(x1)
cons(x1, x2) -> cons(x1, x2)
plus(x1, x2) -> plus(x1, x2)
s(x1) -> s(x1)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
AFS
           →DP Problem 11
Dependency Graph
       →DP Problem 4
Nar


Dependency Pair:


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
AFS
       →DP Problem 4
Narrowing Transformation


Dependency Pair:

SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SUM(app(l, cons(x, cons(y, k)))) -> SUM(app(l, sum(cons(x, cons(y, k)))))
one new Dependency Pair is created:

SUM(app(l, cons(x'', cons(y'', k')))) -> SUM(app(l, sum(cons(plus(x'', y''), k'))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
AFS
       →DP Problem 4
Nar
           →DP Problem 12
Narrowing Transformation


Dependency Pair:

SUM(app(l, cons(x'', cons(y'', k')))) -> SUM(app(l, sum(cons(plus(x'', y''), k'))))


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule

SUM(app(l, cons(x'', cons(y'', k')))) -> SUM(app(l, sum(cons(plus(x'', y''), k'))))
four new Dependency Pairs are created:

SUM(app(l, cons(x''', cons(y''', nil)))) -> SUM(app(l, cons(plus(x''', y'''), nil)))
SUM(app(l, cons(x''', cons(y''', cons(y', l''))))) -> SUM(app(l, sum(cons(plus(plus(x''', y'''), y'), l''))))
SUM(app(l, cons(0, cons(y''', k')))) -> SUM(app(l, sum(cons(y''', k'))))
SUM(app(l, cons(s(x'), cons(y''', k')))) -> SUM(app(l, sum(cons(s(plus(x', y''')), k'))))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
AFS
       →DP Problem 4
Nar
           →DP Problem 12
Nar
             ...
               →DP Problem 13
Argument Filtering and Ordering


Dependency Pairs:

SUM(app(l, cons(s(x'), cons(y''', k')))) -> SUM(app(l, sum(cons(s(plus(x', y''')), k'))))
SUM(app(l, cons(0, cons(y''', k')))) -> SUM(app(l, sum(cons(y''', k'))))
SUM(app(l, cons(x''', cons(y''', cons(y', l''))))) -> SUM(app(l, sum(cons(plus(plus(x''', y'''), y'), l''))))
SUM(app(l, cons(x''', cons(y''', nil)))) -> SUM(app(l, cons(plus(x''', y'''), nil)))


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




The following dependency pairs can be strictly oriented:

SUM(app(l, cons(s(x'), cons(y''', k')))) -> SUM(app(l, sum(cons(s(plus(x', y''')), k'))))
SUM(app(l, cons(0, cons(y''', k')))) -> SUM(app(l, sum(cons(y''', k'))))
SUM(app(l, cons(x''', cons(y''', cons(y', l''))))) -> SUM(app(l, sum(cons(plus(plus(x''', y'''), y'), l''))))
SUM(app(l, cons(x''', cons(y''', nil)))) -> SUM(app(l, cons(plus(x''', y'''), nil)))


The following usable rules for innermost w.r.t. to the AFS can be oriented:

plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))


Used ordering: Polynomial ordering with Polynomial interpretation:
  POL(plus(x1, x2))=  x1 + x2  
  POL(SUM(x1))=  1 + x1  
  POL(0)=  0  
  POL(cons(x1, x2))=  1 + x1 + x2  
  POL(nil)=  0  
  POL(s(x1))=  x1  
  POL(sum(x1))=  x1  
  POL(app(x1, x2))=  x1 + x2  

resulting in one new DP problem.
Used Argument Filtering System:
SUM(x1) -> SUM(x1)
app(x1, x2) -> app(x1, x2)
cons(x1, x2) -> cons(x1, x2)
sum(x1) -> sum(x1)
s(x1) -> s(x1)
plus(x1, x2) -> plus(x1, x2)


   R
DPs
       →DP Problem 1
FwdInst
       →DP Problem 2
FwdInst
       →DP Problem 3
AFS
       →DP Problem 4
Nar
           →DP Problem 12
Nar
             ...
               →DP Problem 14
Dependency Graph


Dependency Pair:


Rules:


app(nil, k) -> k
app(l, nil) -> l
app(cons(x, l), k) -> cons(x, app(l, k))
sum(cons(x, nil)) -> cons(x, nil)
sum(cons(x, cons(y, l))) -> sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) -> sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:01 minutes