0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 UsableRulesProof (⇔)
↳9 QDP
↳10 QReductionProof (⇔)
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 YES
↳14 QDP
↳15 UsableRulesProof (⇔)
↳16 QDP
↳17 QReductionProof (⇔)
↳18 QDP
↳19 QDPOrderProof (⇔)
↳20 QDP
↳21 Induction-Processor (⇐)
↳22 AND
↳23 QDP
↳24 DependencyGraphProof (⇔)
↳25 TRUE
↳26 QTRS
↳27 QTRSRRRProof (⇔)
↳28 QTRS
↳29 QTRSRRRProof (⇔)
↳30 QTRS
↳31 QTRSRRRProof (⇔)
↳32 QTRS
↳33 RisEmptyProof (⇔)
↳34 YES
sub(0, 0) → 0
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(s(x), s(y)) → sub(x, y)
zero(nil) → zero2(0, nil)
zero(cons(x, xs)) → zero2(sub(x, x), cons(x, xs))
zero2(0, nil) → nil
zero2(0, cons(x, xs)) → cons(sub(x, x), zero(xs))
zero2(s(y), nil) → zero(nil)
zero2(s(y), cons(x, xs)) → zero(cons(x, xs))
sub(0, 0) → 0
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(s(x), s(y)) → sub(x, y)
zero(nil) → zero2(0, nil)
zero(cons(x, xs)) → zero2(sub(x, x), cons(x, xs))
zero2(0, nil) → nil
zero2(0, cons(x, xs)) → cons(sub(x, x), zero(xs))
zero2(s(y), nil) → zero(nil)
zero2(s(y), cons(x, xs)) → zero(cons(x, xs))
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
SUB(s(x), s(y)) → SUB(x, y)
ZERO(nil) → ZERO2(0, nil)
ZERO(cons(x, xs)) → ZERO2(sub(x, x), cons(x, xs))
ZERO(cons(x, xs)) → SUB(x, x)
ZERO2(0, cons(x, xs)) → SUB(x, x)
ZERO2(0, cons(x, xs)) → ZERO(xs)
ZERO2(s(y), nil) → ZERO(nil)
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(s(x), s(y)) → sub(x, y)
zero(nil) → zero2(0, nil)
zero(cons(x, xs)) → zero2(sub(x, x), cons(x, xs))
zero2(0, nil) → nil
zero2(0, cons(x, xs)) → cons(sub(x, x), zero(xs))
zero2(s(y), nil) → zero(nil)
zero2(s(y), cons(x, xs)) → zero(cons(x, xs))
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
SUB(s(x), s(y)) → SUB(x, y)
sub(0, 0) → 0
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(s(x), s(y)) → sub(x, y)
zero(nil) → zero2(0, nil)
zero(cons(x, xs)) → zero2(sub(x, x), cons(x, xs))
zero2(0, nil) → nil
zero2(0, cons(x, xs)) → cons(sub(x, x), zero(xs))
zero2(s(y), nil) → zero(nil)
zero2(s(y), cons(x, xs)) → zero(cons(x, xs))
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
SUB(s(x), s(y)) → SUB(x, y)
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
SUB(s(x), s(y)) → SUB(x, y)
From the DPs we obtained the following set of size-change graphs:
ZERO(cons(x, xs)) → ZERO2(sub(x, x), cons(x, xs))
ZERO2(0, cons(x, xs)) → ZERO(xs)
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(s(x), s(y)) → sub(x, y)
zero(nil) → zero2(0, nil)
zero(cons(x, xs)) → zero2(sub(x, x), cons(x, xs))
zero2(0, nil) → nil
zero2(0, cons(x, xs)) → cons(sub(x, x), zero(xs))
zero2(s(y), nil) → zero(nil)
zero2(s(y), cons(x, xs)) → zero(cons(x, xs))
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
ZERO(cons(x, xs)) → ZERO2(sub(x, x), cons(x, xs))
ZERO2(0, cons(x, xs)) → ZERO(xs)
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), s(y)) → sub(x, y)
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
zero(nil)
zero(cons(x0, x1))
zero2(0, nil)
zero2(0, cons(x0, x1))
zero2(s(x0), nil)
zero2(s(x0), cons(x1, x2))
ZERO(cons(x, xs)) → ZERO2(sub(x, x), cons(x, xs))
ZERO2(0, cons(x, xs)) → ZERO(xs)
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), s(y)) → sub(x, y)
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ZERO2(0, cons(x, xs)) → ZERO(xs)
POL(0) = 0
POL(ZERO(x1)) = x1
POL(ZERO2(x1, x2)) = x2
POL(cons(x1, x2)) = 1 + x2
POL(s(x1)) = 0
POL(sub(x1, x2)) = 0
ZERO(cons(x, xs)) → ZERO2(sub(x, x), cons(x, xs))
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), s(y)) → sub(x, y)
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
POL(0) = 0
POL(ZERO(x1)) = 1
POL(ZERO2(x1, x2)) = x1
POL(cons(x1, x2)) = 0
POL(s(x1)) = 1
POL(sub(x1, x2)) = 1
[x, x0, x1, x2, x3, y', x5, x9] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a12](0, 0) -> true equal_sort[a12](0, s(x0)) -> false equal_sort[a12](s(x0), 0) -> false equal_sort[a12](s(x0), s(x1)) -> equal_sort[a12](x0, x1) equal_sort[a5](witness_sort[a5], witness_sort[a5]) -> true equal_sort[a19](cons(x0, x1), cons(x2, x3)) -> equal_sort[a19](x0, x2) and equal_sort[a19](x1, x3) equal_sort[a19](cons(x0, x1), witness_sort[a19]) -> false equal_sort[a19](witness_sort[a19], cons(x0, x1)) -> false equal_sort[a19](witness_sort[a19], witness_sort[a19]) -> true equal_sort[a16](witness_sort[a16], witness_sort[a16]) -> true sub'(0, 0) -> true sub'(s(x1), s(y')) -> sub'(x1, y') sub'(s(x5), 0) -> false sub'(0, s(x9)) -> true sub(0, 0) -> 0 sub(s(x1), s(y')) -> sub(x1, y') sub(s(x5), 0) -> s(x5) sub(0, s(x9)) -> 0
proof of internal # AProVE Commit ID: 9a00b172b26c9abb2d4c4d5eaf341e919eb0fbf1 nowonder 20100222 unpublished dirty Partial correctness of the following Program [x, x0, x1, x2, x3, y', x5, x9] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a12](0, 0) -> true equal_sort[a12](0, s(x0)) -> false equal_sort[a12](s(x0), 0) -> false equal_sort[a12](s(x0), s(x1)) -> equal_sort[a12](x0, x1) equal_sort[a5](witness_sort[a5], witness_sort[a5]) -> true equal_sort[a19](cons(x0, x1), cons(x2, x3)) -> equal_sort[a19](x0, x2) and equal_sort[a19](x1, x3) equal_sort[a19](cons(x0, x1), witness_sort[a19]) -> false equal_sort[a19](witness_sort[a19], cons(x0, x1)) -> false equal_sort[a19](witness_sort[a19], witness_sort[a19]) -> true equal_sort[a16](witness_sort[a16], witness_sort[a16]) -> true sub'(0, 0) -> true sub'(s(x1), s(y')) -> sub'(x1, y') sub'(s(x5), 0) -> false sub'(0, s(x9)) -> true sub(0, 0) -> 0 sub(s(x1), s(y')) -> sub(x1, y') sub(s(x5), 0) -> s(x5) sub(0, s(x9)) -> 0 using the following formula: x:sort[a12].sub'(x, x)=true could be successfully shown: (0) Formula (1) Induction by data structure [EQUIVALENT] (2) AND (3) Formula (4) Symbolic evaluation [EQUIVALENT] (5) YES (6) Formula (7) Symbolic evaluation under hypothesis [EQUIVALENT] (8) YES ---------------------------------------- (0) Obligation: Formula: x:sort[a12].sub'(x, x)=true There are no hypotheses. ---------------------------------------- (1) Induction by data structure (EQUIVALENT) Induction by data structure sort[a12] generates the following cases: 1. Base Case: Formula: sub'(0, 0)=true There are no hypotheses. 1. Step Case: Formula: n:sort[a12].sub'(s(n), s(n))=true Hypotheses: n:sort[a12].sub'(n, n)=true ---------------------------------------- (2) Complex Obligation (AND) ---------------------------------------- (3) Obligation: Formula: sub'(0, 0)=true There are no hypotheses. ---------------------------------------- (4) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (5) YES ---------------------------------------- (6) Obligation: Formula: n:sort[a12].sub'(s(n), s(n))=true Hypotheses: n:sort[a12].sub'(n, n)=true ---------------------------------------- (7) Symbolic evaluation under hypothesis (EQUIVALENT) Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses: n:sort[a12].sub'(n, n)=true ---------------------------------------- (8) YES
ZERO2(s(y), cons(x, xs)) → ZERO(cons(x, xs))
sub(0, 0) → 0
sub(s(x), s(y)) → sub(x, y)
sub(s(x), 0) → s(x)
sub(0, s(x)) → 0
sub(0, 0)
sub(s(x0), 0)
sub(0, s(x0))
sub(s(x0), s(x1))
sub'(0, 0) → true
sub'(s(x1), s(y')) → sub'(x1, y')
sub'(s(x5), 0) → false
sub'(0, s(x9)) → true
sub(0, 0) → 0
sub(s(x1), s(y')) → sub(x1, y')
sub(s(x5), 0) → s(x5)
sub(0, s(x9)) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a12](0, 0) → true
equal_sort[a12](0, s(x0)) → false
equal_sort[a12](s(x0), 0) → false
equal_sort[a12](s(x0), s(x1)) → equal_sort[a12](x0, x1)
equal_sort[a5](witness_sort[a5], witness_sort[a5]) → true
equal_sort[a19](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a19](x0, x2), equal_sort[a19](x1, x3))
equal_sort[a19](cons(x0, x1), witness_sort[a19]) → false
equal_sort[a19](witness_sort[a19], cons(x0, x1)) → false
equal_sort[a19](witness_sort[a19], witness_sort[a19]) → true
equal_sort[a16](witness_sort[a16], witness_sort[a16]) → true
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(and(x1, x2)) = 1 + x1 + x2
POL(cons(x1, x2)) = 1 + x1 + x2
POL(equal_bool(x1, x2)) = x1 + x2
POL(equal_sort[a12](x1, x2)) = 2 + x1 + x2
POL(equal_sort[a16](x1, x2)) = 1 + x1 + x2
POL(equal_sort[a19](x1, x2)) = x1 + x2
POL(equal_sort[a5](x1, x2)) = 1 + x1 + x2
POL(false) = 2
POL(isa_false(x1)) = 3 + x1
POL(isa_true(x1)) = x1
POL(not(x1)) = 3 + x1
POL(or(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = x1
POL(sub(x1, x2)) = 1 + x1 + x2
POL(sub'(x1, x2)) = 3 + x1 + x2
POL(true) = 0
POL(witness_sort[a16]) = 0
POL(witness_sort[a19]) = 1
POL(witness_sort[a5]) = 0
sub'(0, 0) → true
sub'(s(x5), 0) → false
sub'(0, s(x9)) → true
sub(0, 0) → 0
sub(s(x5), 0) → s(x5)
sub(0, s(x9)) → 0
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a12](0, 0) → true
equal_sort[a5](witness_sort[a5], witness_sort[a5]) → true
equal_sort[a19](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a19](x0, x2), equal_sort[a19](x1, x3))
equal_sort[a19](witness_sort[a19], witness_sort[a19]) → true
equal_sort[a16](witness_sort[a16], witness_sort[a16]) → true
sub'(s(x1), s(y')) → sub'(x1, y')
sub(s(x1), s(y')) → sub(x1, y')
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
isa_true(true) → true
isa_true(false) → false
equal_sort[a12](0, s(x0)) → false
equal_sort[a12](s(x0), 0) → false
equal_sort[a12](s(x0), s(x1)) → equal_sort[a12](x0, x1)
equal_sort[a19](cons(x0, x1), witness_sort[a19]) → false
equal_sort[a19](witness_sort[a19], cons(x0, x1)) → false
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(cons(x1, x2)) = 2 + x1 + x2
POL(equal_bool(x1, x2)) = 2 + 2·x1 + 2·x2
POL(equal_sort[a12](x1, x2)) = x1 + x2
POL(equal_sort[a19](x1, x2)) = 2 + 2·x1 + x2
POL(false) = 1
POL(isa_true(x1)) = 2 + 2·x1
POL(s(x1)) = 1 + x1
POL(sub(x1, x2)) = 2·x1 + 2·x2
POL(sub'(x1, x2)) = 2·x1 + 2·x2
POL(true) = 2
POL(witness_sort[a19]) = 2
sub'(s(x1), s(y')) → sub'(x1, y')
sub(s(x1), s(y')) → sub(x1, y')
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
isa_true(true) → true
isa_true(false) → false
equal_sort[a12](s(x0), s(x1)) → equal_sort[a12](x0, x1)
equal_sort[a19](cons(x0, x1), witness_sort[a19]) → false
equal_sort[a19](witness_sort[a19], cons(x0, x1)) → false
equal_sort[a12](0, s(x0)) → false
equal_sort[a12](s(x0), 0) → false
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
POL(0) = 0
POL(equal_sort[a12](x1, x2)) = 1 + x1 + x2
POL(false) = 0
POL(s(x1)) = x1
equal_sort[a12](0, s(x0)) → false
equal_sort[a12](s(x0), 0) → false