(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
max(nil) → 0
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
Q is empty.
(1) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
max(nil) → 0
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(4) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAX(cons(x, cons(y, xs))) → IF1(ge(x, y), x, y, xs)
MAX(cons(x, cons(y, xs))) → GE(x, y)
IF1(true, x, y, xs) → MAX(cons(x, xs))
IF1(false, x, y, xs) → MAX(cons(y, xs))
DEL(x, cons(y, xs)) → IF2(eq(x, y), x, y, xs)
DEL(x, cons(y, xs)) → EQ(x, y)
IF2(false, x, y, xs) → DEL(x, xs)
EQ(s(x), s(y)) → EQ(x, y)
SORT(cons(x, xs)) → MAX(cons(x, xs))
SORT(cons(x, xs)) → SORT(h(del(max(cons(x, xs)), cons(x, xs))))
SORT(cons(x, xs)) → H(del(max(cons(x, xs)), cons(x, xs)))
SORT(cons(x, xs)) → DEL(max(cons(x, xs)), cons(x, xs))
GE(s(x), s(y)) → GE(x, y)
H(cons(x, xs)) → H(xs)
The TRS R consists of the following rules:
max(nil) → 0
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 5 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
H(cons(x, xs)) → H(xs)
The TRS R consists of the following rules:
max(nil) → 0
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(8) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
H(cons(x, xs)) → H(xs)
R is empty.
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(10) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
H(cons(x, xs)) → H(xs)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- H(cons(x, xs)) → H(xs)
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
The TRS R consists of the following rules:
max(nil) → 0
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(15) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
R is empty.
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(17) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x), s(y)) → GE(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GE(s(x), s(y)) → GE(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(20) YES
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(x), s(y)) → EQ(x, y)
The TRS R consists of the following rules:
max(nil) → 0
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(x), s(y)) → EQ(x, y)
R is empty.
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(x), s(y)) → EQ(x, y)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(26) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- EQ(s(x), s(y)) → EQ(x, y)
The graph contains the following edges 1 > 1, 2 > 2
(27) YES
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x, y, xs) → DEL(x, xs)
DEL(x, cons(y, xs)) → IF2(eq(x, y), x, y, xs)
The TRS R consists of the following rules:
max(nil) → 0
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(29) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x, y, xs) → DEL(x, xs)
DEL(x, cons(y, xs)) → IF2(eq(x, y), x, y, xs)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(31) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x, y, xs) → DEL(x, xs)
DEL(x, cons(y, xs)) → IF2(eq(x, y), x, y, xs)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(33) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DEL(x, cons(y, xs)) → IF2(eq(x, y), x, y, xs)
The graph contains the following edges 1 >= 2, 2 > 3, 2 > 4
- IF2(false, x, y, xs) → DEL(x, xs)
The graph contains the following edges 2 >= 1, 4 >= 2
(34) YES
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(true, x, y, xs) → MAX(cons(x, xs))
MAX(cons(x, cons(y, xs))) → IF1(ge(x, y), x, y, xs)
IF1(false, x, y, xs) → MAX(cons(y, xs))
The TRS R consists of the following rules:
max(nil) → 0
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(true, x, y, xs) → MAX(cons(x, xs))
MAX(cons(x, cons(y, xs))) → IF1(ge(x, y), x, y, xs)
IF1(false, x, y, xs) → MAX(cons(y, xs))
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(38) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
h(nil)
h(cons(x0, x1))
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(true, x, y, xs) → MAX(cons(x, xs))
MAX(cons(x, cons(y, xs))) → IF1(ge(x, y), x, y, xs)
IF1(false, x, y, xs) → MAX(cons(y, xs))
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(40) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
IF1(true, x, y, xs) → MAX(cons(x, xs))
MAX(cons(x, cons(y, xs))) → IF1(ge(x, y), x, y, xs)
IF1(false, x, y, xs) → MAX(cons(y, xs))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation:
POL( IF1(x1, ..., x4) ) = 2x2 + 2x3 + x4 + 1
POL( ge(x1, x2) ) = 1
POL( 0 ) = 2
POL( true ) = 0
POL( s(x1) ) = max{0, -1}
POL( false ) = 2
POL( MAX(x1) ) = max{0, x1 - 2}
POL( cons(x1, x2) ) = 2x1 + x2 + 2
The following usable rules [FROCOS05] were oriented:
none
(41) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(42) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(43) YES
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SORT(cons(x, xs)) → SORT(h(del(max(cons(x, xs)), cons(x, xs))))
The TRS R consists of the following rules:
max(nil) → 0
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, nil) → nil
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
sort(nil) → nil
sort(cons(x, xs)) → cons(max(cons(x, xs)), sort(h(del(max(cons(x, xs)), cons(x, xs)))))
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(45) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SORT(cons(x, xs)) → SORT(h(del(max(cons(x, xs)), cons(x, xs))))
The TRS R consists of the following rules:
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
sort(nil)
sort(cons(x0, x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(47) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
sort(nil)
sort(cons(x0, x1))
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SORT(cons(x, xs)) → SORT(h(del(max(cons(x, xs)), cons(x, xs))))
The TRS R consists of the following rules:
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(49) Induction-Processor (SOUND transformation)
This DP could be deleted by the Induction-Processor:SORT(
cons(
x,
xs)) →
SORT(
h(
del(
max(
cons(
x,
xs)),
cons(
x,
xs))))
This order was computed:Polynomial interpretation [POLO]:
POL(0) = 0
POL(SORT(x1)) = 2·x1
POL(cons(x1, x2)) = 1 + 2·x1 + 2·x2
POL(del(x1, x2)) = x2
POL(eq(x1, x2)) = 0
POL(false) = 0
POL(ge(x1, x2)) = 2
POL(h(x1)) = x1
POL(if1(x1, x2, x3, x4)) = 2 + x1 + 2·x2 + 2·x3 + 2·x4
POL(if2(x1, x2, x3, x4)) = 1 + 2·x3 + 2·x4
POL(max(x1)) = 1 + x1
POL(nil) = 0
POL(s(x1)) = 0
POL(true) = 0
At least one of these decreasing rules is always used after the deleted DP:if2(
true,
x1609,
y1039,
xs809) →
xs809The following formula is valid:z0:sort[a36].(¬(
z0 =
nil)→
del'(
max(
z0 ),
z0 )=
true)
The transformed set:del'(
x58,
cons(
y37,
xs29)) →
if2'(
eq(
x58,
y37),
x58,
y37,
xs29)
if2'(
true,
x160,
y103,
xs80) →
trueif2'(
false,
x175,
y113,
xs88) →
del'(
x175,
xs88)
del'(
x190,
nil) →
falsemax(
cons(
x,
nil)) →
xmax(
cons(
x13,
cons(
y7,
xs5))) →
if1(
ge(
x13,
y7),
x13,
y7,
xs5)
if1(
true,
x28,
y17,
xs13) →
max(
cons(
x28,
xs13))
if1(
false,
x43,
y27,
xs21) →
max(
cons(
y27,
xs21))
del(
x58,
cons(
y37,
xs29)) →
if2(
eq(
x58,
y37),
x58,
y37,
xs29)
h(
nil) →
nilh(
cons(
x87,
xs44)) →
cons(
x87,
h(
xs44))
eq(
0,
0) →
trueeq(
0,
s(
y74)) →
falseeq(
s(
x130),
0) →
falseeq(
s(
x145),
s(
y93)) →
eq(
x145,
y93)
if2(
true,
x160,
y103,
xs80) →
xs80if2(
false,
x175,
y113,
xs88) →
cons(
y113,
del(
x175,
xs88))
del(
x190,
nil) →
nilge(
0,
0) →
truege(
s(
x219),
0) →
truege(
0,
s(
x234)) →
falsege(
s(
x249),
s(
y159)) →
ge(
x249,
y159)
max(
nil) →
0equal_bool(
true,
false) →
falseequal_bool(
false,
true) →
falseequal_bool(
true,
true) →
trueequal_bool(
false,
false) →
trueand(
true,
x) →
xand(
false,
x) →
falseor(
true,
x) →
trueor(
false,
x) →
xnot(
false) →
truenot(
true) →
falseisa_true(
true) →
trueisa_true(
false) →
falseisa_false(
true) →
falseisa_false(
false) →
trueequal_sort[a0](
0,
0) →
trueequal_sort[a0](
0,
s(
x0)) →
falseequal_sort[a0](
s(
x0),
0) →
falseequal_sort[a0](
s(
x0),
s(
x1)) →
equal_sort[a0](
x0,
x1)
equal_sort[a36](
cons(
x0,
x1),
cons(
x2,
x3)) →
and(
equal_sort[a36](
x0,
x2),
equal_sort[a36](
x1,
x3))
equal_sort[a36](
cons(
x0,
x1),
nil) →
falseequal_sort[a36](
nil,
cons(
x0,
x1)) →
falseequal_sort[a36](
nil,
nil) →
trueequal_sort[a64](
witness_sort[a64],
witness_sort[a64]) →
trueThe proof given by the theorem prover:The following program was given to the internal theorem prover:
[x, x0, x1, x2, x3, x160, y103, xs80, x175, y113, y37, xs29, x190, x58, x13, y7, xs5, x87, xs44, y74, x130, x145, y93, x219, x234, x249, y159, x28, y17, x43, y27, xs13, xs21]
equal_bool(true, false) -> false
equal_bool(false, true) -> false
equal_bool(true, true) -> true
equal_bool(false, false) -> true
true and x -> x
false and x -> false
true or x -> true
false or x -> x
not(false) -> true
not(true) -> false
isa_true(true) -> true
isa_true(false) -> false
isa_false(true) -> false
isa_false(false) -> true
equal_sort[a0](0, 0) -> true
equal_sort[a0](0, s(x0)) -> false
equal_sort[a0](s(x0), 0) -> false
equal_sort[a0](s(x0), s(x1)) -> equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) -> equal_sort[a36](x0, x2) and equal_sort[a36](x1, x3)
equal_sort[a36](cons(x0, x1), nil) -> false
equal_sort[a36](nil, cons(x0, x1)) -> false
equal_sort[a36](nil, nil) -> true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) -> true
if2'(true, x160, y103, xs80) -> true
if2'(false, x175, y113, cons(y37, xs29)) -> if2'(eq(x175, y37), x175, y37, xs29)
if2'(false, x175, y113, nil) -> false
del'(x190, nil) -> false
equal_bool(eq(x58, y37), true) -> true | del'(x58, cons(y37, xs29)) -> true
equal_bool(eq(x58, y37), true) -> false | del'(x58, cons(y37, xs29)) -> del'(x58, xs29)
max(cons(x, nil)) -> x
max(nil) -> 0
equal_bool(ge(x13, y7), true) -> true | max(cons(x13, cons(y7, xs5))) -> max(cons(x13, xs5))
equal_bool(ge(x13, y7), true) -> false | max(cons(x13, cons(y7, xs5))) -> max(cons(y7, xs5))
h(nil) -> nil
h(cons(x87, xs44)) -> cons(x87, h(xs44))
eq(0, 0) -> true
eq(0, s(y74)) -> false
eq(s(x130), 0) -> false
eq(s(x145), s(y93)) -> eq(x145, y93)
if2(true, x160, y103, xs80) -> xs80
if2(false, x175, y113, cons(y37, xs29)) -> cons(y113, if2(eq(x175, y37), x175, y37, xs29))
if2(false, x175, y113, nil) -> cons(y113, nil)
del(x190, nil) -> nil
equal_bool(eq(x58, y37), true) -> true | del(x58, cons(y37, xs29)) -> xs29
equal_bool(eq(x58, y37), true) -> false | del(x58, cons(y37, xs29)) -> cons(y37, del(x58, xs29))
ge(0, 0) -> true
ge(s(x219), 0) -> true
ge(0, s(x234)) -> false
ge(s(x249), s(y159)) -> ge(x249, y159)
if1(true, x28, y17, nil) -> x28
if1(true, x28, y17, cons(y7, xs5)) -> if1(ge(x28, y7), x28, y7, xs5)
if1(false, x43, y27, nil) -> y27
if1(false, x43, y27, cons(y7, xs5)) -> if1(ge(y27, y7), y27, y7, xs5)
if1(true, x28, y17, xs13) -> 0
if1(false, x43, y27, xs21) -> 0
The following output was given by the internal theorem prover:
proof of internal
# AProVE Commit ID: 9a00b172b26c9abb2d4c4d5eaf341e919eb0fbf1 nowonder 20100222 unpublished dirty
Partial correctness of the following Program
[x, x0, x1, x2, x3, x160, y103, xs80, x175, y113, y37, xs29, x190, x58, x13, y7, xs5, x87, xs44, y74, x130, x145, y93, x219, x234, x249, y159, x28, y17, x43, y27, xs13, xs21]
equal_bool(true, false) -> false
equal_bool(false, true) -> false
equal_bool(true, true) -> true
equal_bool(false, false) -> true
true and x -> x
false and x -> false
true or x -> true
false or x -> x
not(false) -> true
not(true) -> false
isa_true(true) -> true
isa_true(false) -> false
isa_false(true) -> false
isa_false(false) -> true
equal_sort[a0](0, 0) -> true
equal_sort[a0](0, s(x0)) -> false
equal_sort[a0](s(x0), 0) -> false
equal_sort[a0](s(x0), s(x1)) -> equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) -> equal_sort[a36](x0, x2) and equal_sort[a36](x1, x3)
equal_sort[a36](cons(x0, x1), nil) -> false
equal_sort[a36](nil, cons(x0, x1)) -> false
equal_sort[a36](nil, nil) -> true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) -> true
if2'(true, x160, y103, xs80) -> true
if2'(false, x175, y113, cons(y37, xs29)) -> if2'(eq(x175, y37), x175, y37, xs29)
if2'(false, x175, y113, nil) -> false
del'(x190, nil) -> false
equal_bool(eq(x58, y37), true) -> true | del'(x58, cons(y37, xs29)) -> true
equal_bool(eq(x58, y37), true) -> false | del'(x58, cons(y37, xs29)) -> del'(x58, xs29)
max(cons(x, nil)) -> x
max(nil) -> 0
equal_bool(ge(x13, y7), true) -> true | max(cons(x13, cons(y7, xs5))) -> max(cons(x13, xs5))
equal_bool(ge(x13, y7), true) -> false | max(cons(x13, cons(y7, xs5))) -> max(cons(y7, xs5))
h(nil) -> nil
h(cons(x87, xs44)) -> cons(x87, h(xs44))
eq(0, 0) -> true
eq(0, s(y74)) -> false
eq(s(x130), 0) -> false
eq(s(x145), s(y93)) -> eq(x145, y93)
if2(true, x160, y103, xs80) -> xs80
if2(false, x175, y113, cons(y37, xs29)) -> cons(y113, if2(eq(x175, y37), x175, y37, xs29))
if2(false, x175, y113, nil) -> cons(y113, nil)
del(x190, nil) -> nil
equal_bool(eq(x58, y37), true) -> true | del(x58, cons(y37, xs29)) -> xs29
equal_bool(eq(x58, y37), true) -> false | del(x58, cons(y37, xs29)) -> cons(y37, del(x58, xs29))
ge(0, 0) -> true
ge(s(x219), 0) -> true
ge(0, s(x234)) -> false
ge(s(x249), s(y159)) -> ge(x249, y159)
if1(true, x28, y17, nil) -> x28
if1(true, x28, y17, cons(y7, xs5)) -> if1(ge(x28, y7), x28, y7, xs5)
if1(false, x43, y27, nil) -> y27
if1(false, x43, y27, cons(y7, xs5)) -> if1(ge(y27, y7), y27, y7, xs5)
if1(true, x28, y17, xs13) -> 0
if1(false, x43, y27, xs21) -> 0
using the following formula:
z0:sort[a36].(~(z0=nil)->del'(max(z0), z0)=true)
could be successfully shown:
(0) Formula
(1) Induction by algorithm [EQUIVALENT]
(2) AND
(3) Formula
(4) Symbolic evaluation [EQUIVALENT]
(5) Formula
(6) Induction by data structure [EQUIVALENT]
(7) AND
(8) Formula
(9) Symbolic evaluation [EQUIVALENT]
(10) YES
(11) Formula
(12) Conditional Evaluation [EQUIVALENT]
(13) AND
(14) Formula
(15) Symbolic evaluation [EQUIVALENT]
(16) YES
(17) Formula
(18) Symbolic evaluation [EQUIVALENT]
(19) Formula
(20) Hypothesis Lifting [EQUIVALENT]
(21) Formula
(22) Symbolic evaluation under hypothesis [SOUND]
(23) Formula
(24) Hypothesis Lifting [EQUIVALENT]
(25) Formula
(26) Hypothesis Lifting [EQUIVALENT]
(27) Formula
(28) Conditional Evaluation [EQUIVALENT]
(29) AND
(30) Formula
(31) Symbolic evaluation under hypothesis [EQUIVALENT]
(32) YES
(33) Formula
(34) Symbolic evaluation [EQUIVALENT]
(35) YES
(36) Formula
(37) Symbolic evaluation [EQUIVALENT]
(38) YES
(39) Formula
(40) Symbolic evaluation [EQUIVALENT]
(41) Formula
(42) Conditional Evaluation [EQUIVALENT]
(43) Formula
(44) Conditional Evaluation [EQUIVALENT]
(45) AND
(46) Formula
(47) Symbolic evaluation [EQUIVALENT]
(48) YES
(49) Formula
(50) Conditional Evaluation [EQUIVALENT]
(51) AND
(52) Formula
(53) Symbolic evaluation [EQUIVALENT]
(54) YES
(55) Formula
(56) Hypothesis Lifting [EQUIVALENT]
(57) Formula
(58) Conditional Evaluation [EQUIVALENT]
(59) Formula
(60) Symbolic evaluation [EQUIVALENT]
(61) YES
(62) Formula
(63) Symbolic evaluation [EQUIVALENT]
(64) Formula
(65) Conditional Evaluation [EQUIVALENT]
(66) Formula
(67) Conditional Evaluation [EQUIVALENT]
(68) AND
(69) Formula
(70) Symbolic evaluation [EQUIVALENT]
(71) YES
(72) Formula
(73) Symbolic evaluation under hypothesis [EQUIVALENT]
(74) YES
----------------------------------------
(0)
Obligation:
Formula:
z0:sort[a36].(~(z0=nil)->del'(max(z0), z0)=true)
There are no hypotheses.
----------------------------------------
(1) Induction by algorithm (EQUIVALENT)
Induction by algorithm max(z0) generates the following cases:
1. Base Case:
Formula:
x:sort[a0].(~(cons(x, nil)=nil)->del'(max(cons(x, nil)), cons(x, nil))=true)
There are no hypotheses.
2. Base Case:
Formula:
(~(nil=nil)->del'(max(nil), nil)=true)
There are no hypotheses.
1. Step Case:
Formula:
x13:sort[a0],y7:sort[a0],xs5:sort[a36].(~(cons(x13, cons(y7, xs5))=nil)->del'(max(cons(x13, cons(y7, xs5))), cons(x13, cons(y7, xs5)))=true)
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
2. Step Case:
Formula:
x13:sort[a0],y7:sort[a0],xs5:sort[a36].(~(cons(x13, cons(y7, xs5))=nil)->del'(max(cons(x13, cons(y7, xs5))), cons(x13, cons(y7, xs5)))=true)
Hypotheses:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=false
----------------------------------------
(2)
Complex Obligation (AND)
----------------------------------------
(3)
Obligation:
Formula:
x:sort[a0].(~(cons(x, nil)=nil)->del'(max(cons(x, nil)), cons(x, nil))=true)
There are no hypotheses.
----------------------------------------
(4) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
x:sort[a0].del'(x, cons(x, nil))=true
----------------------------------------
(5)
Obligation:
Formula:
x:sort[a0].del'(x, cons(x, nil))=true
There are no hypotheses.
----------------------------------------
(6) Induction by data structure (EQUIVALENT)
Induction by data structure sort[a0] generates the following cases:
1. Base Case:
Formula:
del'(0, cons(0, nil))=true
There are no hypotheses.
1. Step Case:
Formula:
n:sort[a0].del'(s(n), cons(s(n), nil))=true
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
----------------------------------------
(7)
Complex Obligation (AND)
----------------------------------------
(8)
Obligation:
Formula:
del'(0, cons(0, nil))=true
There are no hypotheses.
----------------------------------------
(9) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(10)
YES
----------------------------------------
(11)
Obligation:
Formula:
n:sort[a0].del'(s(n), cons(s(n), nil))=true
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
----------------------------------------
(12) Conditional Evaluation (EQUIVALENT)
The formula could be reduced to the following new obligations by conditional evaluation:
Formula:
true=true
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
n:sort[a0].equal_bool(eq(s(n), s(n)), true)=true
Formula:
n:sort[a0].del'(s(n), nil)=true
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
n:sort[a0].equal_bool(eq(s(n), s(n)), true)=false
----------------------------------------
(13)
Complex Obligation (AND)
----------------------------------------
(14)
Obligation:
Formula:
true=true
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
n:sort[a0].equal_bool(eq(s(n), s(n)), true)=true
----------------------------------------
(15) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(16)
YES
----------------------------------------
(17)
Obligation:
Formula:
n:sort[a0].del'(s(n), nil)=true
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
n:sort[a0].equal_bool(eq(s(n), s(n)), true)=false
----------------------------------------
(18) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
False
----------------------------------------
(19)
Obligation:
Formula:
False
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
n:sort[a0].equal_bool(eq(s(n), s(n)), true)=false
----------------------------------------
(20) Hypothesis Lifting (EQUIVALENT)
Formula could be generalised by hypothesis lifting to the following new obligation:
Formula:
n:sort[a0].((del'(n, cons(n, nil))=true/\equal_bool(eq(s(n), s(n)), true)=false)->False)
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
n:sort[a0].equal_bool(eq(s(n), s(n)), true)=false
----------------------------------------
(21)
Obligation:
Formula:
n:sort[a0].((del'(n, cons(n, nil))=true/\equal_bool(eq(s(n), s(n)), true)=false)->False)
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
n:sort[a0].equal_bool(eq(s(n), s(n)), true)=false
----------------------------------------
(22) Symbolic evaluation under hypothesis (SOUND)
Could be reduced by symbolic evaluation under hypothesis to:
n:sort[a0].~(equal_bool(eq(n, n), true)=false)
By using the following hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
----------------------------------------
(23)
Obligation:
Formula:
n:sort[a0].~(equal_bool(eq(n, n), true)=false)
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
n:sort[a0].equal_bool(eq(s(n), s(n)), true)=false
----------------------------------------
(24) Hypothesis Lifting (EQUIVALENT)
Formula could be generalised by hypothesis lifting to the following new obligation:
Formula:
n:sort[a0].(equal_bool(eq(n, n), true)=false->~(equal_bool(eq(n, n), true)=false))
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
----------------------------------------
(25)
Obligation:
Formula:
n:sort[a0].(equal_bool(eq(n, n), true)=false->~(equal_bool(eq(n, n), true)=false))
Hypotheses:
n:sort[a0].del'(n, cons(n, nil))=true
----------------------------------------
(26) Hypothesis Lifting (EQUIVALENT)
Formula could be generalised by hypothesis lifting to the following new obligation:
Formula:
n:sort[a0].(del'(n, cons(n, nil))=true->(equal_bool(eq(n, n), true)=false->~(equal_bool(eq(n, n), true)=false)))
There are no hypotheses.
----------------------------------------
(27)
Obligation:
Formula:
n:sort[a0].(del'(n, cons(n, nil))=true->(equal_bool(eq(n, n), true)=false->~(equal_bool(eq(n, n), true)=false)))
There are no hypotheses.
----------------------------------------
(28) Conditional Evaluation (EQUIVALENT)
The formula could be reduced to the following new obligations by conditional evaluation:
Formula:
n:sort[a0].(true=true->(equal_bool(eq(n, n), true)=false->~(equal_bool(eq(n, n), true)=false)))
Hypotheses:
n:sort[a0].equal_bool(eq(n, n), true)=true
Formula:
n:sort[a0].(del'(n, nil)=true->(equal_bool(eq(n, n), true)=false->~(equal_bool(eq(n, n), true)=false)))
Hypotheses:
n:sort[a0].equal_bool(eq(n, n), true)=false
----------------------------------------
(29)
Complex Obligation (AND)
----------------------------------------
(30)
Obligation:
Formula:
n:sort[a0].(true=true->(equal_bool(eq(n, n), true)=false->~(equal_bool(eq(n, n), true)=false)))
Hypotheses:
n:sort[a0].equal_bool(eq(n, n), true)=true
----------------------------------------
(31) Symbolic evaluation under hypothesis (EQUIVALENT)
Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses:
n:sort[a0].equal_bool(eq(n, n), true)=true
----------------------------------------
(32)
YES
----------------------------------------
(33)
Obligation:
Formula:
n:sort[a0].(del'(n, nil)=true->(equal_bool(eq(n, n), true)=false->~(equal_bool(eq(n, n), true)=false)))
Hypotheses:
n:sort[a0].equal_bool(eq(n, n), true)=false
----------------------------------------
(34) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(35)
YES
----------------------------------------
(36)
Obligation:
Formula:
(~(nil=nil)->del'(max(nil), nil)=true)
There are no hypotheses.
----------------------------------------
(37) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(38)
YES
----------------------------------------
(39)
Obligation:
Formula:
x13:sort[a0],y7:sort[a0],xs5:sort[a36].(~(cons(x13, cons(y7, xs5))=nil)->del'(max(cons(x13, cons(y7, xs5))), cons(x13, cons(y7, xs5)))=true)
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
----------------------------------------
(40) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
x13:sort[a0],y7:sort[a0],xs5:sort[a36].del'(max(cons(x13, cons(y7, xs5))), cons(x13, cons(y7, xs5)))=true
----------------------------------------
(41)
Obligation:
Formula:
x13:sort[a0],y7:sort[a0],xs5:sort[a36].del'(max(cons(x13, cons(y7, xs5))), cons(x13, cons(y7, xs5)))=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
----------------------------------------
(42) Conditional Evaluation (EQUIVALENT)
The formula could be reduced to the following new obligations by conditional evaluation:
Formula:
x13:sort[a0],xs5:sort[a36],y7:sort[a0].del'(max(cons(x13, xs5)), cons(x13, cons(y7, xs5)))=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
----------------------------------------
(43)
Obligation:
Formula:
x13:sort[a0],xs5:sort[a36],y7:sort[a0].del'(max(cons(x13, xs5)), cons(x13, cons(y7, xs5)))=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
----------------------------------------
(44) Conditional Evaluation (EQUIVALENT)
The formula could be reduced to the following new obligations by conditional evaluation:
Formula:
true=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=true
Formula:
x13:sort[a0],xs5:sort[a36],y7:sort[a0].del'(max(cons(x13, xs5)), cons(y7, xs5))=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=false
----------------------------------------
(45)
Complex Obligation (AND)
----------------------------------------
(46)
Obligation:
Formula:
true=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=true
----------------------------------------
(47) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(48)
YES
----------------------------------------
(49)
Obligation:
Formula:
x13:sort[a0],xs5:sort[a36],y7:sort[a0].del'(max(cons(x13, xs5)), cons(y7, xs5))=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=false
----------------------------------------
(50) Conditional Evaluation (EQUIVALENT)
The formula could be reduced to the following new obligations by conditional evaluation:
Formula:
true=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=false
x13:sort[a0],xs5:sort[a36],y7:sort[a0].equal_bool(eq(max(cons(x13, xs5)), y7), true)=true
Formula:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), xs5)=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=false
x13:sort[a0],xs5:sort[a36],y7:sort[a0].equal_bool(eq(max(cons(x13, xs5)), y7), true)=false
----------------------------------------
(51)
Complex Obligation (AND)
----------------------------------------
(52)
Obligation:
Formula:
true=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=false
x13:sort[a0],xs5:sort[a36],y7:sort[a0].equal_bool(eq(max(cons(x13, xs5)), y7), true)=true
----------------------------------------
(53) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(54)
YES
----------------------------------------
(55)
Obligation:
Formula:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), xs5)=true
Hypotheses:
x13:sort[a0],xs5:sort[a36].del'(max(cons(x13, xs5)), cons(x13, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=false
x13:sort[a0],xs5:sort[a36],y7:sort[a0].equal_bool(eq(max(cons(x13, xs5)), y7), true)=false
----------------------------------------
(56) Hypothesis Lifting (EQUIVALENT)
Formula could be generalised by hypothesis lifting to the following new obligation:
Formula:
x13:sort[a0],xs5:sort[a36].(del'(max(cons(x13, xs5)), cons(x13, xs5))=true->del'(max(cons(x13, xs5)), xs5)=true)
Hypotheses:
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=false
x13:sort[a0],xs5:sort[a36],y7:sort[a0].equal_bool(eq(max(cons(x13, xs5)), y7), true)=false
----------------------------------------
(57)
Obligation:
Formula:
x13:sort[a0],xs5:sort[a36].(del'(max(cons(x13, xs5)), cons(x13, xs5))=true->del'(max(cons(x13, xs5)), xs5)=true)
Hypotheses:
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=false
x13:sort[a0],xs5:sort[a36],y7:sort[a0].equal_bool(eq(max(cons(x13, xs5)), y7), true)=false
----------------------------------------
(58) Conditional Evaluation (EQUIVALENT)
The formula could be reduced to the following new obligations by conditional evaluation:
Formula:
x13:sort[a0],xs5:sort[a36].(del'(max(cons(x13, xs5)), xs5)=true->del'(max(cons(x13, xs5)), xs5)=true)
Hypotheses:
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=false
x13:sort[a0],xs5:sort[a36],y7:sort[a0].equal_bool(eq(max(cons(x13, xs5)), y7), true)=false
----------------------------------------
(59)
Obligation:
Formula:
x13:sort[a0],xs5:sort[a36].(del'(max(cons(x13, xs5)), xs5)=true->del'(max(cons(x13, xs5)), xs5)=true)
Hypotheses:
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=true
x13:sort[a0],xs5:sort[a36].equal_bool(eq(max(cons(x13, xs5)), x13), true)=false
x13:sort[a0],xs5:sort[a36],y7:sort[a0].equal_bool(eq(max(cons(x13, xs5)), y7), true)=false
----------------------------------------
(60) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(61)
YES
----------------------------------------
(62)
Obligation:
Formula:
x13:sort[a0],y7:sort[a0],xs5:sort[a36].(~(cons(x13, cons(y7, xs5))=nil)->del'(max(cons(x13, cons(y7, xs5))), cons(x13, cons(y7, xs5)))=true)
Hypotheses:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=false
----------------------------------------
(63) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
x13:sort[a0],y7:sort[a0],xs5:sort[a36].del'(max(cons(x13, cons(y7, xs5))), cons(x13, cons(y7, xs5)))=true
----------------------------------------
(64)
Obligation:
Formula:
x13:sort[a0],y7:sort[a0],xs5:sort[a36].del'(max(cons(x13, cons(y7, xs5))), cons(x13, cons(y7, xs5)))=true
Hypotheses:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=false
----------------------------------------
(65) Conditional Evaluation (EQUIVALENT)
The formula could be reduced to the following new obligations by conditional evaluation:
Formula:
y7:sort[a0],xs5:sort[a36],x13:sort[a0].del'(max(cons(y7, xs5)), cons(x13, cons(y7, xs5)))=true
Hypotheses:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=false
----------------------------------------
(66)
Obligation:
Formula:
y7:sort[a0],xs5:sort[a36],x13:sort[a0].del'(max(cons(y7, xs5)), cons(x13, cons(y7, xs5)))=true
Hypotheses:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=false
----------------------------------------
(67) Conditional Evaluation (EQUIVALENT)
The formula could be reduced to the following new obligations by conditional evaluation:
Formula:
true=true
Hypotheses:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=false
y7:sort[a0],xs5:sort[a36],x13:sort[a0].equal_bool(eq(max(cons(y7, xs5)), x13), true)=true
Formula:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
Hypotheses:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=false
y7:sort[a0],xs5:sort[a36],x13:sort[a0].equal_bool(eq(max(cons(y7, xs5)), x13), true)=false
----------------------------------------
(68)
Complex Obligation (AND)
----------------------------------------
(69)
Obligation:
Formula:
true=true
Hypotheses:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=false
y7:sort[a0],xs5:sort[a36],x13:sort[a0].equal_bool(eq(max(cons(y7, xs5)), x13), true)=true
----------------------------------------
(70) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(71)
YES
----------------------------------------
(72)
Obligation:
Formula:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
Hypotheses:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
x13:sort[a0],y7:sort[a0].equal_bool(ge(x13, y7), true)=false
y7:sort[a0],xs5:sort[a36],x13:sort[a0].equal_bool(eq(max(cons(y7, xs5)), x13), true)=false
----------------------------------------
(73) Symbolic evaluation under hypothesis (EQUIVALENT)
Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses:
y7:sort[a0],xs5:sort[a36].del'(max(cons(y7, xs5)), cons(y7, xs5))=true
----------------------------------------
(74)
YES
(50) Complex Obligation (AND)
(51) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
max(cons(x, nil)) → x
max(cons(x, cons(y, xs))) → if1(ge(x, y), x, y, xs)
if1(true, x, y, xs) → max(cons(x, xs))
if1(false, x, y, xs) → max(cons(y, xs))
del(x, cons(y, xs)) → if2(eq(x, y), x, y, xs)
h(nil) → nil
h(cons(x, xs)) → cons(x, h(xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if2(true, x, y, xs) → xs
if2(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
ge(0, 0) → true
ge(s(x), 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
The set Q consists of the following terms:
max(nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, nil)
del(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
h(nil)
h(cons(x0, x1))
We have to consider all minimal (P,Q,R)-chains.
(52) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(53) YES
(54) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
Q is empty.
(55) Overlay + Local Confluence (EQUIVALENT transformation)
The TRS is overlay and locally confluent. By [NOC] we can switch to innermost.
(56) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
(57) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DEL'(x58, cons(y37, xs29)) → IF2'(eq(x58, y37), x58, y37, xs29)
DEL'(x58, cons(y37, xs29)) → EQ(x58, y37)
IF2'(false, x175, y113, xs88) → DEL'(x175, xs88)
MAX(cons(x13, cons(y7, xs5))) → IF1(ge(x13, y7), x13, y7, xs5)
MAX(cons(x13, cons(y7, xs5))) → GE(x13, y7)
IF1(true, x28, y17, xs13) → MAX(cons(x28, xs13))
IF1(false, x43, y27, xs21) → MAX(cons(y27, xs21))
DEL(x58, cons(y37, xs29)) → IF2(eq(x58, y37), x58, y37, xs29)
DEL(x58, cons(y37, xs29)) → EQ(x58, y37)
H(cons(x87, xs44)) → H(xs44)
EQ(s(x145), s(y93)) → EQ(x145, y93)
IF2(false, x175, y113, xs88) → DEL(x175, xs88)
GE(s(x249), s(y159)) → GE(x249, y159)
EQUAL_SORT[A0](s(x0), s(x1)) → EQUAL_SORT[A0](x0, x1)
EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → AND(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A36](x0, x2)
EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A36](x1, x3)
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(59) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 4 less nodes.
(60) Complex Obligation (AND)
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A36](x1, x3)
EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A36](x0, x2)
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(62) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A36](x1, x3)
EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A36](x0, x2)
R is empty.
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(64) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
(65) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A36](x1, x3)
EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A36](x0, x2)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(66) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A36](x1, x3)
The graph contains the following edges 1 > 1, 2 > 2
- EQUAL_SORT[A36](cons(x0, x1), cons(x2, x3)) → EQUAL_SORT[A36](x0, x2)
The graph contains the following edges 1 > 1, 2 > 2
(67) YES
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQUAL_SORT[A0](s(x0), s(x1)) → EQUAL_SORT[A0](x0, x1)
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(69) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQUAL_SORT[A0](s(x0), s(x1)) → EQUAL_SORT[A0](x0, x1)
R is empty.
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(71) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQUAL_SORT[A0](s(x0), s(x1)) → EQUAL_SORT[A0](x0, x1)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(73) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- EQUAL_SORT[A0](s(x0), s(x1)) → EQUAL_SORT[A0](x0, x1)
The graph contains the following edges 1 > 1, 2 > 2
(74) YES
(75) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x249), s(y159)) → GE(x249, y159)
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(76) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(77) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x249), s(y159)) → GE(x249, y159)
R is empty.
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(78) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
(79) Obligation:
Q DP problem:
The TRS P consists of the following rules:
GE(s(x249), s(y159)) → GE(x249, y159)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(80) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- GE(s(x249), s(y159)) → GE(x249, y159)
The graph contains the following edges 1 > 1, 2 > 2
(81) YES
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(x145), s(y93)) → EQ(x145, y93)
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(83) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(84) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(x145), s(y93)) → EQ(x145, y93)
R is empty.
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(85) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
(86) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EQ(s(x145), s(y93)) → EQ(x145, y93)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(87) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- EQ(s(x145), s(y93)) → EQ(x145, y93)
The graph contains the following edges 1 > 1, 2 > 2
(88) YES
(89) Obligation:
Q DP problem:
The TRS P consists of the following rules:
H(cons(x87, xs44)) → H(xs44)
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(90) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(91) Obligation:
Q DP problem:
The TRS P consists of the following rules:
H(cons(x87, xs44)) → H(xs44)
R is empty.
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(92) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
(93) Obligation:
Q DP problem:
The TRS P consists of the following rules:
H(cons(x87, xs44)) → H(xs44)
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(94) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- H(cons(x87, xs44)) → H(xs44)
The graph contains the following edges 1 > 1
(95) YES
(96) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x175, y113, xs88) → DEL(x175, xs88)
DEL(x58, cons(y37, xs29)) → IF2(eq(x58, y37), x58, y37, xs29)
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(97) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(98) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x175, y113, xs88) → DEL(x175, xs88)
DEL(x58, cons(y37, xs29)) → IF2(eq(x58, y37), x58, y37, xs29)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(99) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
(100) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2(false, x175, y113, xs88) → DEL(x175, xs88)
DEL(x58, cons(y37, xs29)) → IF2(eq(x58, y37), x58, y37, xs29)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(101) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DEL(x58, cons(y37, xs29)) → IF2(eq(x58, y37), x58, y37, xs29)
The graph contains the following edges 1 >= 2, 2 > 3, 2 > 4
- IF2(false, x175, y113, xs88) → DEL(x175, xs88)
The graph contains the following edges 2 >= 1, 4 >= 2
(102) YES
(103) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(true, x28, y17, xs13) → MAX(cons(x28, xs13))
MAX(cons(x13, cons(y7, xs5))) → IF1(ge(x13, y7), x13, y7, xs5)
IF1(false, x43, y27, xs21) → MAX(cons(y27, xs21))
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(104) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(105) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(true, x28, y17, xs13) → MAX(cons(x28, xs13))
MAX(cons(x13, cons(y7, xs5))) → IF1(ge(x13, y7), x13, y7, xs5)
IF1(false, x43, y27, xs21) → MAX(cons(y27, xs21))
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(106) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
(107) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(true, x28, y17, xs13) → MAX(cons(x28, xs13))
MAX(cons(x13, cons(y7, xs5))) → IF1(ge(x13, y7), x13, y7, xs5)
IF1(false, x43, y27, xs21) → MAX(cons(y27, xs21))
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(108) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MAX(cons(x13, cons(y7, xs5))) → IF1(ge(x13, y7), x13, y7, xs5)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(IF1(x1, x2, x3, x4)) = | 1 | + | | · | x1 | + | | · | x2 | + | | · | x3 | + | | · | x4 |
POL(cons(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(ge(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
none
(109) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF1(true, x28, y17, xs13) → MAX(cons(x28, xs13))
IF1(false, x43, y27, xs21) → MAX(cons(y27, xs21))
The TRS R consists of the following rules:
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
The set Q consists of the following terms:
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(110) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(111) TRUE
(112) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2'(false, x175, y113, xs88) → DEL'(x175, xs88)
DEL'(x58, cons(y37, xs29)) → IF2'(eq(x58, y37), x58, y37, xs29)
The TRS R consists of the following rules:
del'(x58, cons(y37, xs29)) → if2'(eq(x58, y37), x58, y37, xs29)
if2'(true, x160, y103, xs80) → true
if2'(false, x175, y113, xs88) → del'(x175, xs88)
del'(x190, nil) → false
max(cons(x, nil)) → x
max(cons(x13, cons(y7, xs5))) → if1(ge(x13, y7), x13, y7, xs5)
if1(true, x28, y17, xs13) → max(cons(x28, xs13))
if1(false, x43, y27, xs21) → max(cons(y27, xs21))
del(x58, cons(y37, xs29)) → if2(eq(x58, y37), x58, y37, xs29)
h(nil) → nil
h(cons(x87, xs44)) → cons(x87, h(xs44))
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
if2(true, x160, y103, xs80) → xs80
if2(false, x175, y113, xs88) → cons(y113, del(x175, xs88))
del(x190, nil) → nil
ge(0, 0) → true
ge(s(x219), 0) → true
ge(0, s(x234)) → false
ge(s(x249), s(y159)) → ge(x249, y159)
max(nil) → 0
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](0, 0) → true
equal_sort[a0](0, s(x0)) → false
equal_sort[a0](s(x0), 0) → false
equal_sort[a0](s(x0), s(x1)) → equal_sort[a0](x0, x1)
equal_sort[a36](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a36](x0, x2), equal_sort[a36](x1, x3))
equal_sort[a36](cons(x0, x1), nil) → false
equal_sort[a36](nil, cons(x0, x1)) → false
equal_sort[a36](nil, nil) → true
equal_sort[a64](witness_sort[a64], witness_sort[a64]) → true
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(113) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(114) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2'(false, x175, y113, xs88) → DEL'(x175, xs88)
DEL'(x58, cons(y37, xs29)) → IF2'(eq(x58, y37), x58, y37, xs29)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
The set Q consists of the following terms:
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
We have to consider all minimal (P,Q,R)-chains.
(115) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
del'(x0, cons(x1, x2))
if2'(true, x0, x1, x2)
if2'(false, x0, x1, x2)
del'(x0, nil)
max(cons(x0, nil))
max(cons(x0, cons(x1, x2)))
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
del(x0, cons(x1, x2))
h(nil)
h(cons(x0, x1))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)
del(x0, nil)
ge(0, 0)
ge(s(x0), 0)
ge(0, s(x0))
ge(s(x0), s(x1))
max(nil)
equal_bool(true, false)
equal_bool(false, true)
equal_bool(true, true)
equal_bool(false, false)
and(true, x0)
and(false, x0)
or(true, x0)
or(false, x0)
not(false)
not(true)
isa_true(true)
isa_true(false)
isa_false(true)
isa_false(false)
equal_sort[a0](0, 0)
equal_sort[a0](0, s(x0))
equal_sort[a0](s(x0), 0)
equal_sort[a0](s(x0), s(x1))
equal_sort[a36](cons(x0, x1), cons(x2, x3))
equal_sort[a36](cons(x0, x1), nil)
equal_sort[a36](nil, cons(x0, x1))
equal_sort[a36](nil, nil)
equal_sort[a64](witness_sort[a64], witness_sort[a64])
(116) Obligation:
Q DP problem:
The TRS P consists of the following rules:
IF2'(false, x175, y113, xs88) → DEL'(x175, xs88)
DEL'(x58, cons(y37, xs29)) → IF2'(eq(x58, y37), x58, y37, xs29)
The TRS R consists of the following rules:
eq(0, 0) → true
eq(0, s(y74)) → false
eq(s(x130), 0) → false
eq(s(x145), s(y93)) → eq(x145, y93)
The set Q consists of the following terms:
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
We have to consider all minimal (P,Q,R)-chains.
(117) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DEL'(x58, cons(y37, xs29)) → IF2'(eq(x58, y37), x58, y37, xs29)
The graph contains the following edges 1 >= 2, 2 > 3, 2 > 4
- IF2'(false, x175, y113, xs88) → DEL'(x175, xs88)
The graph contains the following edges 2 >= 1, 4 >= 2
(118) YES