0 QTRS
↳1 Overlay + Local Confluence (⇔)
↳2 QTRS
↳3 DependencyPairsProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 UsableRulesProof (⇔)
↳9 QDP
↳10 QReductionProof (⇔)
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 YES
↳14 QDP
↳15 UsableRulesProof (⇔)
↳16 QDP
↳17 QReductionProof (⇔)
↳18 QDP
↳19 QDPSizeChangeProof (⇔)
↳20 YES
↳21 QDP
↳22 UsableRulesProof (⇔)
↳23 QDP
↳24 QReductionProof (⇔)
↳25 QDP
↳26 QDPSizeChangeProof (⇔)
↳27 YES
↳28 QDP
↳29 UsableRulesProof (⇔)
↳30 QDP
↳31 QReductionProof (⇔)
↳32 QDP
↳33 Rewriting (⇔)
↳34 QDP
↳35 Rewriting (⇔)
↳36 QDP
↳37 Rewriting (⇔)
↳38 QDP
↳39 UsableRulesProof (⇔)
↳40 QDP
↳41 QReductionProof (⇔)
↳42 QDP
↳43 Induction-Processor (⇐)
↳44 AND
↳45 QDP
↳46 PisEmptyProof (⇔)
↳47 YES
↳48 QTRS
↳49 QTRSRRRProof (⇔)
↳50 QTRS
↳51 RisEmptyProof (⇔)
↳52 YES
double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))
double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
DOUBLE(s(x)) → DOUBLE(x)
DEL(x, cons(y, xs)) → IF(eq(x, y), x, y, xs)
DEL(x, cons(y, xs)) → EQ(x, y)
IF(false, x, y, xs) → DEL(x, xs)
EQ(s(x), s(y)) → EQ(x, y)
DOUBLELIST(cons(x, xs)) → DOUBLE(x)
DOUBLELIST(cons(x, xs)) → DOUBLELIST(del(first(cons(x, xs)), cons(x, xs)))
DOUBLELIST(cons(x, xs)) → DEL(first(cons(x, xs)), cons(x, xs))
DOUBLELIST(cons(x, xs)) → FIRST(cons(x, xs))
double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
EQ(s(x), s(y)) → EQ(x, y)
double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
EQ(s(x), s(y)) → EQ(x, y)
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
EQ(s(x), s(y)) → EQ(x, y)
From the DPs we obtained the following set of size-change graphs:
IF(false, x, y, xs) → DEL(x, xs)
DEL(x, cons(y, xs)) → IF(eq(x, y), x, y, xs)
double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
IF(false, x, y, xs) → DEL(x, xs)
DEL(x, cons(y, xs)) → IF(eq(x, y), x, y, xs)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
IF(false, x, y, xs) → DEL(x, xs)
DEL(x, cons(y, xs)) → IF(eq(x, y), x, y, xs)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
From the DPs we obtained the following set of size-change graphs:
DOUBLE(s(x)) → DOUBLE(x)
double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
DOUBLE(s(x)) → DOUBLE(x)
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
DOUBLE(s(x)) → DOUBLE(x)
From the DPs we obtained the following set of size-change graphs:
DOUBLELIST(cons(x, xs)) → DOUBLELIST(del(first(cons(x, xs)), cons(x, xs)))
double(0) → 0
double(s(x)) → s(s(double(x)))
del(x, nil) → nil
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
first(nil) → 0
first(cons(x, xs)) → x
doublelist(nil) → nil
doublelist(cons(x, xs)) → cons(double(x), doublelist(del(first(cons(x, xs)), cons(x, xs))))
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
DOUBLELIST(cons(x, xs)) → DOUBLELIST(del(first(cons(x, xs)), cons(x, xs)))
first(cons(x, xs)) → x
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
double(0)
double(s(x0))
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
doublelist(nil)
doublelist(cons(x0, x1))
double(0)
double(s(x0))
doublelist(nil)
doublelist(cons(x0, x1))
DOUBLELIST(cons(x, xs)) → DOUBLELIST(del(first(cons(x, xs)), cons(x, xs)))
first(cons(x, xs)) → x
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
DOUBLELIST(cons(x, xs)) → DOUBLELIST(if(eq(first(cons(x, xs)), x), first(cons(x, xs)), x, xs))
DOUBLELIST(cons(x, xs)) → DOUBLELIST(if(eq(first(cons(x, xs)), x), first(cons(x, xs)), x, xs))
first(cons(x, xs)) → x
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
DOUBLELIST(cons(x, xs)) → DOUBLELIST(if(eq(x, x), first(cons(x, xs)), x, xs))
DOUBLELIST(cons(x, xs)) → DOUBLELIST(if(eq(x, x), first(cons(x, xs)), x, xs))
first(cons(x, xs)) → x
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
DOUBLELIST(cons(x, xs)) → DOUBLELIST(if(eq(x, x), x, x, xs))
DOUBLELIST(cons(x, xs)) → DOUBLELIST(if(eq(x, x), x, x, xs))
first(cons(x, xs)) → x
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
del(x, nil) → nil
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
DOUBLELIST(cons(x, xs)) → DOUBLELIST(if(eq(x, x), x, x, xs))
eq(0, 0) → true
eq(s(x), s(y)) → eq(x, y)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
del(x, nil) → nil
eq(0, s(y)) → false
eq(s(x), 0) → false
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
first(nil)
first(cons(x0, x1))
first(nil)
first(cons(x0, x1))
DOUBLELIST(cons(x, xs)) → DOUBLELIST(if(eq(x, x), x, x, xs))
eq(0, 0) → true
eq(s(x), s(y)) → eq(x, y)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
del(x, nil) → nil
eq(0, s(y)) → false
eq(s(x), 0) → false
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
POL(0) = 0
POL(DOUBLELIST(x1)) = x1
POL(cons(x1, x2)) = 1 + x2
POL(del(x1, x2)) = x2
POL(eq(x1, x2)) = x1 + x2
POL(false) = 0
POL(if(x1, x2, x3, x4)) = 1 + x4
POL(nil) = 0
POL(s(x1)) = x1
POL(true) = 0
[x, x0, x1, x2, x3, x11, y9, xs4, x18, y15, y21, xs12, x32, x25, x4, y3, y32, x45] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a19](0, 0) -> true equal_sort[a19](0, s(x0)) -> false equal_sort[a19](s(x0), 0) -> false equal_sort[a19](s(x0), s(x1)) -> equal_sort[a19](x0, x1) equal_sort[a4](cons(x0, x1), cons(x2, x3)) -> equal_sort[a4](x0, x2) and equal_sort[a4](x1, x3) equal_sort[a4](cons(x0, x1), nil) -> false equal_sort[a4](nil, cons(x0, x1)) -> false equal_sort[a4](nil, nil) -> true equal_sort[a37](witness_sort[a37], witness_sort[a37]) -> true if'(true, x11, y9, xs4) -> true if'(false, x18, y15, cons(y21, xs12)) -> if'(eq(x18, y21), x18, y21, xs12) if'(false, x18, y15, nil) -> false del'(x32, nil) -> false equal_bool(eq(x25, y21), true) -> true | del'(x25, cons(y21, xs12)) -> true equal_bool(eq(x25, y21), true) -> false | del'(x25, cons(y21, xs12)) -> del'(x25, xs12) eq(0, 0) -> true eq(s(x4), s(y3)) -> eq(x4, y3) eq(0, s(y32)) -> false eq(s(x45), 0) -> false if(true, x11, y9, xs4) -> xs4 if(false, x18, y15, cons(y21, xs12)) -> cons(y15, if(eq(x18, y21), x18, y21, xs12)) if(false, x18, y15, nil) -> cons(y15, nil) del(x32, nil) -> nil equal_bool(eq(x25, y21), true) -> true | del(x25, cons(y21, xs12)) -> xs12 equal_bool(eq(x25, y21), true) -> false | del(x25, cons(y21, xs12)) -> cons(y21, del(x25, xs12))
proof of internal # AProVE Commit ID: 9a00b172b26c9abb2d4c4d5eaf341e919eb0fbf1 nowonder 20100222 unpublished dirty Partial correctness of the following Program [x, x0, x1, x2, x3, x11, y9, xs4, x18, y15, y21, xs12, x32, x25, x4, y3, y32, x45] equal_bool(true, false) -> false equal_bool(false, true) -> false equal_bool(true, true) -> true equal_bool(false, false) -> true true and x -> x false and x -> false true or x -> true false or x -> x not(false) -> true not(true) -> false isa_true(true) -> true isa_true(false) -> false isa_false(true) -> false isa_false(false) -> true equal_sort[a19](0, 0) -> true equal_sort[a19](0, s(x0)) -> false equal_sort[a19](s(x0), 0) -> false equal_sort[a19](s(x0), s(x1)) -> equal_sort[a19](x0, x1) equal_sort[a4](cons(x0, x1), cons(x2, x3)) -> equal_sort[a4](x0, x2) and equal_sort[a4](x1, x3) equal_sort[a4](cons(x0, x1), nil) -> false equal_sort[a4](nil, cons(x0, x1)) -> false equal_sort[a4](nil, nil) -> true equal_sort[a37](witness_sort[a37], witness_sort[a37]) -> true if'(true, x11, y9, xs4) -> true if'(false, x18, y15, cons(y21, xs12)) -> if'(eq(x18, y21), x18, y21, xs12) if'(false, x18, y15, nil) -> false del'(x32, nil) -> false equal_bool(eq(x25, y21), true) -> true | del'(x25, cons(y21, xs12)) -> true equal_bool(eq(x25, y21), true) -> false | del'(x25, cons(y21, xs12)) -> del'(x25, xs12) eq(0, 0) -> true eq(s(x4), s(y3)) -> eq(x4, y3) eq(0, s(y32)) -> false eq(s(x45), 0) -> false if(true, x11, y9, xs4) -> xs4 if(false, x18, y15, cons(y21, xs12)) -> cons(y15, if(eq(x18, y21), x18, y21, xs12)) if(false, x18, y15, nil) -> cons(y15, nil) del(x32, nil) -> nil equal_bool(eq(x25, y21), true) -> true | del(x25, cons(y21, xs12)) -> xs12 equal_bool(eq(x25, y21), true) -> false | del(x25, cons(y21, xs12)) -> cons(y21, del(x25, xs12)) using the following formula: x:sort[a19],xs:sort[a4].if'(eq(x, x), x, x, xs)=true could be successfully shown: (0) Formula (1) Induction by data structure [EQUIVALENT] (2) AND (3) Formula (4) Symbolic evaluation [EQUIVALENT] (5) YES (6) Formula (7) Symbolic evaluation [EQUIVALENT] (8) Formula (9) Case Analysis [EQUIVALENT] (10) AND (11) Formula (12) Inverse Substitution [SOUND] (13) Formula (14) Induction by data structure [SOUND] (15) AND (16) Formula (17) Symbolic evaluation [EQUIVALENT] (18) YES (19) Formula (20) Symbolic evaluation under hypothesis [EQUIVALENT] (21) YES (22) Formula (23) Inverse Substitution [SOUND] (24) Formula (25) Induction by data structure [SOUND] (26) AND (27) Formula (28) Symbolic evaluation [EQUIVALENT] (29) YES (30) Formula (31) Symbolic evaluation under hypothesis [EQUIVALENT] (32) YES ---------------------------------------- (0) Obligation: Formula: x:sort[a19],xs:sort[a4].if'(eq(x, x), x, x, xs)=true There are no hypotheses. ---------------------------------------- (1) Induction by data structure (EQUIVALENT) Induction by data structure sort[a19] generates the following cases: 1. Base Case: Formula: xs:sort[a4].if'(eq(0, 0), 0, 0, xs)=true There are no hypotheses. 1. Step Case: Formula: n:sort[a19],xs:sort[a4].if'(eq(s(n), s(n)), s(n), s(n), xs)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (2) Complex Obligation (AND) ---------------------------------------- (3) Obligation: Formula: xs:sort[a4].if'(eq(0, 0), 0, 0, xs)=true There are no hypotheses. ---------------------------------------- (4) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (5) YES ---------------------------------------- (6) Obligation: Formula: n:sort[a19],xs:sort[a4].if'(eq(s(n), s(n)), s(n), s(n), xs)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (7) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: n:sort[a19],xs:sort[a4].if'(eq(n, n), s(n), s(n), xs)=true ---------------------------------------- (8) Obligation: Formula: n:sort[a19],xs:sort[a4].if'(eq(n, n), s(n), s(n), xs)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (9) Case Analysis (EQUIVALENT) Case analysis leads to the following new obligations: Formula: n:sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(n, n), s(n), s(n), cons(x_1, x_2))=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true Formula: n:sort[a19].if'(eq(n, n), s(n), s(n), nil)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Formula: n:sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(n, n), s(n), s(n), cons(x_1, x_2))=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (12) Inverse Substitution (SOUND) The formula could be generalised by inverse substitution to: n:sort[a19],n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(n, n), n', n', cons(x_1, x_2))=true Inverse substitution used: [s(n)/n'] ---------------------------------------- (13) Obligation: Formula: n:sort[a19],n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(n, n), n', n', cons(x_1, x_2))=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (14) Induction by data structure (SOUND) Induction by data structure sort[a19] generates the following cases: 1. Base Case: Formula: n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(0, 0), n', n', cons(x_1, x_2))=true There are no hypotheses. 1. Step Case: Formula: n'':sort[a19],n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(s(n''), s(n'')), n', n', cons(x_1, x_2))=true Hypotheses: n'':sort[a19],!n':sort[a19],!x_1:sort[a19],!x_2:sort[a4].if'(eq(n'', n''), n', n', cons(x_1, x_2))=true ---------------------------------------- (15) Complex Obligation (AND) ---------------------------------------- (16) Obligation: Formula: n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(0, 0), n', n', cons(x_1, x_2))=true There are no hypotheses. ---------------------------------------- (17) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (18) YES ---------------------------------------- (19) Obligation: Formula: n'':sort[a19],n':sort[a19],x_1:sort[a19],x_2:sort[a4].if'(eq(s(n''), s(n'')), n', n', cons(x_1, x_2))=true Hypotheses: n'':sort[a19],!n':sort[a19],!x_1:sort[a19],!x_2:sort[a4].if'(eq(n'', n''), n', n', cons(x_1, x_2))=true ---------------------------------------- (20) Symbolic evaluation under hypothesis (EQUIVALENT) Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses: n'':sort[a19],!n':sort[a19],!x_1:sort[a19],!x_2:sort[a4].if'(eq(n'', n''), n', n', cons(x_1, x_2))=true ---------------------------------------- (21) YES ---------------------------------------- (22) Obligation: Formula: n:sort[a19].if'(eq(n, n), s(n), s(n), nil)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (23) Inverse Substitution (SOUND) The formula could be generalised by inverse substitution to: n:sort[a19],n':sort[a19].if'(eq(n, n), n', n', nil)=true Inverse substitution used: [s(n)/n'] ---------------------------------------- (24) Obligation: Formula: n:sort[a19],n':sort[a19].if'(eq(n, n), n', n', nil)=true Hypotheses: n:sort[a19],!xs:sort[a4].if'(eq(n, n), n, n, xs)=true ---------------------------------------- (25) Induction by data structure (SOUND) Induction by data structure sort[a19] generates the following cases: 1. Base Case: Formula: n':sort[a19].if'(eq(0, 0), n', n', nil)=true There are no hypotheses. 1. Step Case: Formula: n'':sort[a19],n':sort[a19].if'(eq(s(n''), s(n'')), n', n', nil)=true Hypotheses: n'':sort[a19],!n':sort[a19].if'(eq(n'', n''), n', n', nil)=true ---------------------------------------- (26) Complex Obligation (AND) ---------------------------------------- (27) Obligation: Formula: n':sort[a19].if'(eq(0, 0), n', n', nil)=true There are no hypotheses. ---------------------------------------- (28) Symbolic evaluation (EQUIVALENT) Could be reduced to the following new obligation by simple symbolic evaluation: True ---------------------------------------- (29) YES ---------------------------------------- (30) Obligation: Formula: n'':sort[a19],n':sort[a19].if'(eq(s(n''), s(n'')), n', n', nil)=true Hypotheses: n'':sort[a19],!n':sort[a19].if'(eq(n'', n''), n', n', nil)=true ---------------------------------------- (31) Symbolic evaluation under hypothesis (EQUIVALENT) Could be shown using symbolic evaluation under hypothesis, by using the following hypotheses: n'':sort[a19],!n':sort[a19].if'(eq(n'', n''), n', n', nil)=true ---------------------------------------- (32) YES
eq(0, 0) → true
eq(s(x), s(y)) → eq(x, y)
if(true, x, y, xs) → xs
if(false, x, y, xs) → cons(y, del(x, xs))
del(x, cons(y, xs)) → if(eq(x, y), x, y, xs)
del(x, nil) → nil
eq(0, s(y)) → false
eq(s(x), 0) → false
del(x0, nil)
del(x0, cons(x1, x2))
if(true, x0, x1, x2)
if(false, x0, x1, x2)
eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
if'(true, x11, y9, xs4) → true
if'(false, x18, y15, xs8) → del'(x18, xs8)
del'(x25, cons(y21, xs12)) → if'(eq(x25, y21), x25, y21, xs12)
del'(x32, nil) → false
eq(0, 0) → true
eq(s(x4), s(y3)) → eq(x4, y3)
if(true, x11, y9, xs4) → xs4
if(false, x18, y15, xs8) → cons(y15, del(x18, xs8))
del(x25, cons(y21, xs12)) → if(eq(x25, y21), x25, y21, xs12)
del(x32, nil) → nil
eq(0, s(y32)) → false
eq(s(x45), 0) → false
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a19](0, 0) → true
equal_sort[a19](0, s(x0)) → false
equal_sort[a19](s(x0), 0) → false
equal_sort[a19](s(x0), s(x1)) → equal_sort[a19](x0, x1)
equal_sort[a4](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a4](x0, x2), equal_sort[a4](x1, x3))
equal_sort[a4](cons(x0, x1), nil) → false
equal_sort[a4](nil, cons(x0, x1)) → false
equal_sort[a4](nil, nil) → true
equal_sort[a37](witness_sort[a37], witness_sort[a37]) → true
[if4, del2] > [false, nil, s1, not1, equalsort[a19]2] > cons2 > [if'4, del'2] > [true, eq2, isatrue1]
[if4, del2] > [false, nil, s1, not1, equalsort[a19]2] > cons2 > and2
equalbool2 > [true, eq2, isatrue1]
or2 > [true, eq2, isatrue1]
isafalse1 > [false, nil, s1, not1, equalsort[a19]2] > cons2 > [if'4, del'2] > [true, eq2, isatrue1]
isafalse1 > [false, nil, s1, not1, equalsort[a19]2] > cons2 > and2
equalsort[a4]2 > [false, nil, s1, not1, equalsort[a19]2] > cons2 > [if'4, del'2] > [true, eq2, isatrue1]
equalsort[a4]2 > [false, nil, s1, not1, equalsort[a19]2] > cons2 > and2
equalsort[a37]2 > [true, eq2, isatrue1]
witnesssort[a37] > [true, eq2, isatrue1]
if'4: [2,4,1,3]
true: multiset
false: multiset
del'2: [1,2]
cons2: multiset
eq2: [2,1]
nil: multiset
0: multiset
s1: [1]
if4: [2,4,1,3]
del2: [1,2]
equalbool2: multiset
and2: multiset
or2: [2,1]
not1: [1]
isatrue1: multiset
isafalse1: multiset
equalsort[a19]2: [2,1]
equalsort[a4]2: multiset
equalsort[a37]2: multiset
witnesssort[a37]: multiset
if'(true, x11, y9, xs4) → true
if'(false, x18, y15, xs8) → del'(x18, xs8)
del'(x25, cons(y21, xs12)) → if'(eq(x25, y21), x25, y21, xs12)
del'(x32, nil) → false
eq(0, 0) → true
eq(s(x4), s(y3)) → eq(x4, y3)
if(true, x11, y9, xs4) → xs4
if(false, x18, y15, xs8) → cons(y15, del(x18, xs8))
del(x25, cons(y21, xs12)) → if(eq(x25, y21), x25, y21, xs12)
del(x32, nil) → nil
eq(0, s(y32)) → false
eq(s(x45), 0) → false
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a19](0, 0) → true
equal_sort[a19](0, s(x0)) → false
equal_sort[a19](s(x0), 0) → false
equal_sort[a19](s(x0), s(x1)) → equal_sort[a19](x0, x1)
equal_sort[a4](cons(x0, x1), cons(x2, x3)) → and(equal_sort[a4](x0, x2), equal_sort[a4](x1, x3))
equal_sort[a4](cons(x0, x1), nil) → false
equal_sort[a4](nil, cons(x0, x1)) → false
equal_sort[a4](nil, nil) → true
equal_sort[a37](witness_sort[a37], witness_sort[a37]) → true