************************************* Proof { system = (VAR x y u v) (STRATEGY INNERMOST) (RULES minus (x, y) -> cond (gt (x, y), x, y) cond (false, x, y) -> 0 cond (true, x, y) -> s (minus (x, s (y))) gt (0, v) -> false gt (s (u), 0) -> true gt (s (u), s (v)) -> gt (u, v)) , property = Termination , truth = Nothing , transform = Ignore_Strategy , to = [ Proof { system = (VAR x y u v) (STRATEGY INNERMOST) (RULES minus (x, y) -> cond (gt (x, y), x, y) cond (false, x, y) -> 0 cond (true, x, y) -> s (minus (x, s (y))) gt (0, v) -> false gt (s (u), 0) -> true gt (s (u), s (v)) -> gt (u, v)) , property = Termination , truth = Nothing , transform = Dependency_Pair_Transformation , to = [ Proof { system = (VAR x y u v) (STRATEGY INNERMOST) (RULES minusP (x, y) -> condP (gt (x, y), x, y) minusP (x, y) -> gtP (x, y) condP (true, x, y) -> minusP (x, s (y)) gtP (s (u), s (v)) -> gtP (u, v) minus (x, y) ->= cond (gt (x, y), x, y) cond (false, x, y) ->= 0 cond (true, x, y) ->= s (minus (x, s (y))) gt (0, v) ->= false gt (s (u), 0) ->= true gt (s (u), s (v)) ->= gt (u, v)) , property = Top_Termination , truth = Nothing , transform = Remove { interpretation = Interpretation gtP |-> (x , y) |-> E^1x0 * x + E^1x0 * y + (0) minusP |-> (x , y) |-> E^1x0 * x + E^1x0 * y + (1) condP |-> (x , y , z) |-> E^1x0 * x + E^1x0 * y + E^1x0 * z + (1) 0 |-> () |-> E^0x1 s |-> (x) |-> E^0x0 * x + E^0x1 false |-> () |-> E^0x1 gt |-> (x , y) |-> E^0x0 * x + E^0x0 * y + E^0x1 true |-> () |-> E^0x1 minus |-> (x , y) |-> E^0x0 * x + E^0x0 * y + E^0x1 cond |-> (x , y , z) |-> E^0x0 * x + E^0x0 * y + E^0x0 * z + E^0x1 , removes_rules = [ minusP (x, y) -> gtP (x, y) ] , comment = size 0 , heights ( 3 , 7 ) , time } , to = [ Proof { system = (VAR x y u v) (STRATEGY INNERMOST) (RULES minusP (x, y) -> condP (gt (x, y), x, y) condP (true, x, y) -> minusP (x, s (y)) gtP (s (u), s (v)) -> gtP (u, v) minus (x, y) ->= cond (gt (x, y), x, y) cond (false, x, y) ->= 0 cond (true, x, y) ->= s (minus (x, s (y))) gt (0, v) ->= false gt (s (u), 0) ->= true gt (s (u), s (v)) ->= gt (u, v)) , property = Top_Termination , truth = Nothing , transform = Split { interpretation = Interpretation gtP |-> (x , y) |-> E^1x0 * x + E^1x0 * y + (0) minusP |-> (x , y) |-> E^1x0 * x + E^1x0 * y + (1) condP |-> (x , y , z) |-> E^1x0 * x + E^1x0 * y + E^1x0 * z + (1) 0 |-> () |-> E^0x1 s |-> (x) |-> E^0x0 * x + E^0x1 false |-> () |-> E^0x1 gt |-> (x , y) |-> E^0x0 * x + E^0x0 * y + E^0x1 true |-> () |-> E^0x1 minus |-> (x , y) |-> E^0x0 * x + E^0x0 * y + E^0x1 cond |-> (x , y , z) |-> E^0x0 * x + E^0x0 * y + E^0x0 * z + E^0x1 , clusters = [ [ gtP (s (u), s (v)) -> gtP (u, v) ] , [ minusP (x, y) -> condP (gt (x, y), x, y) , condP (true, x, y) -> minusP (x, s (y)) ] ] , comment = size 0 , heights ( 3 , 7 ) , time split_dimension: 0 } , to = [ Claim { system = (VAR x y u v) (STRATEGY INNERMOST) (RULES gtP (s (u), s (v)) -> gtP (u, v) minus (x, y) ->= cond (gt (x, y), x, y) cond (false, x, y) ->= 0 cond (true, x, y) ->= s (minus (x, s (y))) gt (0, v) ->= false gt (s (u), 0) ->= true gt (s (u), s (v)) ->= gt (u, v)) , property = Top_Termination } , Claim { system = (VAR x y u v) (STRATEGY INNERMOST) (RULES minusP (x, y) -> condP (gt (x, y), x, y) condP (true, x, y) -> minusP (x, s (y)) minus (x, y) ->= cond (gt (x, y), x, y) cond (false, x, y) ->= 0 cond (true, x, y) ->= s (minus (x, s (y))) gt (0, v) ->= false gt (s (u), 0) ->= true gt (s (u), s (v)) ->= gt (u, v)) , property = Top_Termination } ] } ] } ] } ] } Proof summary: value Nothing for property Termination for system with 6 strict rules and 0 non-strict rules follows by transformation Ignore_Strategy from value Nothing for property Termination for system with 6 strict rules and 0 non-strict rules follows by transformation Dependency_Pair_Transformation from value Nothing for property Top_Termination for system with 4 strict rules and 6 non-strict rules follows by transformation Remove { interpretation = Interpretation gtP |-> (x , y) |-> E^1x0 * x + E^1x0 * y + (0) minusP |-> (x , y) |-> E^1x0 * x + E^1x0 * y + (1) condP |-> (x , y , z) |-> E^1x0 * x + E^1x0 * y + E^1x0 * z + (1) 0 |-> () |-> E^0x1 s |-> (x) |-> E^0x0 * x + E^0x1 false |-> () |-> E^0x1 gt |-> (x , y) |-> E^0x0 * x + E^0x0 * y + E^0x1 true |-> () |-> E^0x1 minus |-> (x , y) |-> E^0x0 * x + E^0x0 * y + E^0x1 cond |-> (x , y , z) |-> E^0x0 * x + E^0x0 * y + E^0x0 * z + E^0x1 , removes_rules = [ minusP (x, y) -> gtP (x, y) ] , comment = size 0 , heights ( 3 , 7 ) , time } from value Nothing for property Top_Termination for system with 3 strict rules and 6 non-strict rules follows by transformation Split { interpretation = Interpretation gtP |-> (x , y) |-> E^1x0 * x + E^1x0 * y + (0) minusP |-> (x , y) |-> E^1x0 * x + E^1x0 * y + (1) condP |-> (x , y , z) |-> E^1x0 * x + E^1x0 * y + E^1x0 * z + (1) 0 |-> () |-> E^0x1 s |-> (x) |-> E^0x0 * x + E^0x1 false |-> () |-> E^0x1 gt |-> (x , y) |-> E^0x0 * x + E^0x0 * y + E^0x1 true |-> () |-> E^0x1 minus |-> (x , y) |-> E^0x0 * x + E^0x0 * y + E^0x1 cond |-> (x , y , z) |-> E^0x0 * x + E^0x0 * y + E^0x0 * z + E^0x1 , clusters = [ [ gtP (s (u), s (v)) -> gtP (u, v) ] , [ minusP (x, y) -> condP (gt (x, y), x, y) , condP (true, x, y) -> minusP (x, s (y)) ] ] , comment = size 0 , heights ( 3 , 7 ) , time split_dimension: 0 } from Claim { system = (VAR x y u v) (STRATEGY INNERMOST) (RULES gtP (s (u), s (v)) -> gtP (u, v) minus (x, y) ->= cond (gt (x, y), x, y) cond (false, x, y) ->= 0 cond (true, x, y) ->= s (minus (x, s (y))) gt (0, v) ->= false gt (s (u), 0) ->= true gt (s (u), s (v)) ->= gt (u, v)) , property = Top_Termination } Claim { system = (VAR x y u v) (STRATEGY INNERMOST) (RULES minusP (x, y) -> condP (gt (x, y), x, y) condP (true, x, y) -> minusP (x, s (y)) minus (x, y) ->= cond (gt (x, y), x, y) cond (false, x, y) ->= 0 cond (true, x, y) ->= s (minus (x, s (y))) gt (0, v) ->= false gt (s (u), 0) ->= true gt (s (u), s (v)) ->= gt (u, v)) , property = Top_Termination } ------------------------------------------------------------------ matchbox general information (including details on proof methods): http://dfa.imn.htwk-leipzig.de/matchbox/ this matchbox implementation uses the SAT solver SatELite/MiniSat by Niklas Een and Niklas Sörensson http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/ matchbox process information arguments : --solver=/home/nowonder/forschung/increasing/wst06/matchbox/SatELiteGTI --timeout-command=/home/nowonder/forschung/increasing/wst06/matchbox/timeout --tmpdir=/home/nowonder/forschung/increasing/wst06/matchbox --timeout=60 /tmp/tmpbefxCI/ex01.trs started : Thu Feb 22 16:23:19 CET 2007 finished : Thu Feb 22 16:24:09 CET 2007 run system : Linux aprove 2.6.14-gentoo-r5 #1 SMP Sun Dec 25 15:42:02 CET 2005 x86_64 release date : Thu Jun 8 23:18:07 CEST 2006 build date : Thu Jun 8 23:18:07 CEST 2006 build system : Linux dfa 2.6.8-2-k7 #1 Tue Aug 16 14:00:15 UTC 2005 i686 GNU/Linux used clock time: 50 secs