Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)



QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)
SQUARE(s(x)) → SQUARE(x)
SQUARE(s(x)) → PLUS(square(x), double(x))
COND(false, x, y) → SQUARE(s(s(y)))
LE(s(u), s(v)) → LE(u, v)
COND(false, x, y) → LOG(x, square(s(s(y))))
SQUARE(s(x)) → DOUBLE(x)
PLUS(n, s(m)) → PLUS(n, m)
LOG(x, s(s(y))) → LE(x, s(s(y)))
LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)
COND(false, x, y) → DOUBLE(log(x, square(s(s(y)))))

The TRS R consists of the following rules:

log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)
SQUARE(s(x)) → SQUARE(x)
SQUARE(s(x)) → PLUS(square(x), double(x))
COND(false, x, y) → SQUARE(s(s(y)))
LE(s(u), s(v)) → LE(u, v)
COND(false, x, y) → LOG(x, square(s(s(y))))
SQUARE(s(x)) → DOUBLE(x)
PLUS(n, s(m)) → PLUS(n, m)
LOG(x, s(s(y))) → LE(x, s(s(y)))
LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)
COND(false, x, y) → DOUBLE(log(x, square(s(s(y)))))

The TRS R consists of the following rules:

log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 5 SCCs with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(n, s(m)) → PLUS(n, m)

The TRS R consists of the following rules:

log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(n, s(m)) → PLUS(n, m)

R is empty.
The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(n, s(m)) → PLUS(n, m)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [16] together with the size-change analysis [27] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)

The TRS R consists of the following rules:

log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)

R is empty.
The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

DOUBLE(s(x)) → DOUBLE(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [16] together with the size-change analysis [27] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SQUARE(s(x)) → SQUARE(x)

The TRS R consists of the following rules:

log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SQUARE(s(x)) → SQUARE(x)

R is empty.
The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SQUARE(s(x)) → SQUARE(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [16] together with the size-change analysis [27] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(u), s(v)) → LE(u, v)

The TRS R consists of the following rules:

log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(u), s(v)) → LE(u, v)

R is empty.
The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(u), s(v)) → LE(u, v)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [16] together with the size-change analysis [27] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND(false, x, y) → LOG(x, square(s(s(y))))
LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)

The TRS R consists of the following rules:

log(x, s(s(y))) → cond(le(x, s(s(y))), x, y)
cond(true, x, y) → s(0)
cond(false, x, y) → double(log(x, square(s(s(y)))))
le(0, v) → true
le(s(u), 0) → false
le(s(u), s(v)) → le(u, v)
double(0) → 0
double(s(x)) → s(s(double(x)))
square(0) → 0
square(s(x)) → s(plus(square(x), double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND(false, x, y) → LOG(x, square(s(s(y))))
LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
cond(true, x0, x1)
log(x0, s(s(x1)))
square(s(x0))
double(s(x0))
cond(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

cond(true, x0, x1)
log(x0, s(s(x1)))
cond(false, x0, x1)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND(false, x, y) → LOG(x, square(s(s(y))))
LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, x, y) → LOG(x, square(s(s(y)))) at position [1] we obtained the following new rules:

COND(false, x, y) → LOG(x, s(plus(square(s(y)), double(s(y)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
QDP
                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND(false, x, y) → LOG(x, s(plus(square(s(y)), double(s(y)))))
LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, x, y) → LOG(x, s(plus(square(s(y)), double(s(y))))) at position [1,0,0] we obtained the following new rules:

COND(false, x, y) → LOG(x, s(plus(s(plus(square(y), double(y))), double(s(y)))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
QDP
                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND(false, x, y) → LOG(x, s(plus(s(plus(square(y), double(y))), double(s(y)))))
LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, x, y) → LOG(x, s(plus(s(plus(square(y), double(y))), double(s(y))))) at position [1,0,1] we obtained the following new rules:

COND(false, x, y) → LOG(x, s(plus(s(plus(square(y), double(y))), s(s(double(y))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
QDP
                                ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND(false, x, y) → LOG(x, s(plus(s(plus(square(y), double(y))), s(s(double(y))))))
LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, x, y) → LOG(x, s(plus(s(plus(square(y), double(y))), s(s(double(y)))))) at position [1,0] we obtained the following new rules:

COND(false, x, y) → LOG(x, s(s(plus(s(plus(square(y), double(y))), s(double(y))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND(false, x, y) → LOG(x, s(s(plus(s(plus(square(y), double(y))), s(double(y))))))
LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, x, y) → LOG(x, s(s(plus(s(plus(square(y), double(y))), s(double(y)))))) at position [1,0,0] we obtained the following new rules:

COND(false, x, y) → LOG(x, s(s(s(plus(s(plus(square(y), double(y))), double(y))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
QDP
                                        ↳ Narrowing
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

COND(false, x, y) → LOG(x, s(s(s(plus(s(plus(square(y), double(y))), double(y))))))
LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [13] the rule LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y) at position [0] we obtained the following new rules:

LOG(s(x0), s(s(y1))) → COND(le(x0, s(y1)), s(x0), y1)
LOG(0, s(s(y1))) → COND(true, 0, y1)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
QDP
                                            ↳ DependencyGraphProof
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

LOG(s(x0), s(s(y1))) → COND(le(x0, s(y1)), s(x0), y1)
LOG(0, s(s(y1))) → COND(true, 0, y1)
COND(false, x, y) → LOG(x, s(s(s(plus(s(plus(square(y), double(y))), double(y))))))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
QDP
                                                ↳ Instantiation
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

LOG(s(x0), s(s(y1))) → COND(le(x0, s(y1)), s(x0), y1)
COND(false, x, y) → LOG(x, s(s(s(plus(s(plus(square(y), double(y))), double(y))))))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [13] the rule LOG(s(x0), s(s(y1))) → COND(le(x0, s(y1)), s(x0), y1) we obtained the following new rules:

LOG(s(x0), s(s(s(y_4)))) → COND(le(x0, s(s(y_4))), s(x0), s(y_4))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Instantiation
QDP
                                                    ↳ Instantiation
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

COND(false, x, y) → LOG(x, s(s(s(plus(s(plus(square(y), double(y))), double(y))))))
LOG(s(x0), s(s(s(y_4)))) → COND(le(x0, s(s(y_4))), s(x0), s(y_4))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [13] the rule COND(false, x, y) → LOG(x, s(s(s(plus(s(plus(square(y), double(y))), double(y)))))) we obtained the following new rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(plus(square(s(z1)), double(s(z1)))), double(s(z1)))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
QDP
                                                        ↳ Rewriting
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(plus(square(s(z1)), double(s(z1)))), double(s(z1)))))))
LOG(s(x0), s(s(s(y_4)))) → COND(le(x0, s(s(y_4))), s(x0), s(y_4))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(plus(square(s(z1)), double(s(z1)))), double(s(z1))))))) at position [1,0,0,0,0,0,0] we obtained the following new rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(plus(s(plus(square(z1), double(z1))), double(s(z1)))), double(s(z1)))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
QDP
                                                            ↳ Rewriting
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

LOG(s(x0), s(s(s(y_4)))) → COND(le(x0, s(s(y_4))), s(x0), s(y_4))
COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(plus(s(plus(square(z1), double(z1))), double(s(z1)))), double(s(z1)))))))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(plus(s(plus(square(z1), double(z1))), double(s(z1)))), double(s(z1))))))) at position [1,0,0,0,0,0,1] we obtained the following new rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(plus(s(plus(square(z1), double(z1))), s(s(double(z1))))), double(s(z1)))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ Rewriting
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(plus(s(plus(square(z1), double(z1))), s(s(double(z1))))), double(s(z1)))))))
LOG(s(x0), s(s(s(y_4)))) → COND(le(x0, s(s(y_4))), s(x0), s(y_4))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(plus(s(plus(square(z1), double(z1))), s(s(double(z1))))), double(s(z1))))))) at position [1,0,0,0,0,0] we obtained the following new rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(s(plus(s(plus(square(z1), double(z1))), s(double(z1))))), double(s(z1)))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
QDP
                                                                    ↳ Rewriting
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(s(plus(s(plus(square(z1), double(z1))), s(double(z1))))), double(s(z1)))))))
LOG(s(x0), s(s(s(y_4)))) → COND(le(x0, s(s(y_4))), s(x0), s(y_4))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(s(plus(s(plus(square(z1), double(z1))), s(double(z1))))), double(s(z1))))))) at position [1,0,0,0,0,0,0] we obtained the following new rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), double(s(z1)))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
QDP
                                                                        ↳ Rewriting
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

LOG(s(x0), s(s(s(y_4)))) → COND(le(x0, s(s(y_4))), s(x0), s(y_4))
COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), double(s(z1)))))))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), double(s(z1))))))) at position [1,0,0,0,1] we obtained the following new rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), s(s(double(z1))))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
QDP
                                                                            ↳ Rewriting
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

LOG(s(x0), s(s(s(y_4)))) → COND(le(x0, s(s(y_4))), s(x0), s(y_4))
COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), s(s(double(z1))))))))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), s(s(double(z1)))))))) at position [1,0,0,0] we obtained the following new rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), s(double(z1))))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
QDP
                                                                                ↳ Rewriting
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

LOG(s(x0), s(s(s(y_4)))) → COND(le(x0, s(s(y_4))), s(x0), s(y_4))
COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), s(double(z1))))))))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), s(double(z1)))))))) at position [1,0,0,0,0] we obtained the following new rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), double(z1))))))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                          ↳ QDP
                                            ↳ DependencyGraphProof
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ Rewriting
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ Rewriting
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ Rewriting
                                                                          ↳ QDP
                                                                            ↳ Rewriting
                                                                              ↳ QDP
                                                                                ↳ Rewriting
QDP
                                        ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

COND(false, s(z0), s(z1)) → LOG(s(z0), s(s(s(s(s(plus(s(s(s(plus(s(plus(square(z1), double(z1))), double(z1))))), double(z1))))))))
LOG(s(x0), s(s(s(y_4)))) → COND(le(x0, s(s(y_4))), s(x0), s(y_4))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus with the following steps:
Note that final constraints are written in bold face.

For Pair LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y) the following chains were created:



For Pair COND(false, x, y) → LOG(x, s(s(s(plus(s(plus(square(y), double(y))), double(y)))))) the following chains were created:



To summarize, we get the following constraints P for the following pairs.
The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved.
Polynomial interpretation [21]:

POL(0) = 0   
POL(COND(x1, x2, x3)) = -1 - x1 + 2·x2 - x3   
POL(LOG(x1, x2)) = 2 + 2·x1 - x2   
POL(c) = -2   
POL(double(x1)) = 2·x1   
POL(false) = 1   
POL(le(x1, x2)) = 1   
POL(plus(x1, x2)) = x2   
POL(s(x1)) = 2 + x1   
POL(square(x1)) = 0   
POL(true) = 1   

The following pairs are in P>:

COND(false, x, y) → LOG(x, s(s(s(plus(s(plus(square(y), double(y))), double(y))))))
The following pairs are in Pbound:

LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)
The following rules are usable:

falsele(s(u), 0)
s(s(double(x))) → double(s(x))
le(u, v) → le(s(u), s(v))
s(plus(n, m)) → plus(n, s(m))
nplus(n, 0)
truele(0, v)
0double(0)


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                        ↳ NonInfProof
                                          ↳ AND
QDP
                                              ↳ DependencyGraphProof
                                            ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LOG(x, s(s(y))) → COND(le(x, s(s(y))), x, y)

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Rewriting
                      ↳ QDP
                        ↳ Rewriting
                          ↳ QDP
                            ↳ Rewriting
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Rewriting
                                      ↳ QDP
                                        ↳ Narrowing
                                        ↳ NonInfProof
                                          ↳ AND
                                            ↳ QDP
QDP
                                              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COND(false, x, y) → LOG(x, s(s(s(plus(s(plus(square(y), double(y))), double(y))))))

The TRS R consists of the following rules:

le(0, v) → true
le(s(u), s(v)) → le(u, v)
le(s(u), 0) → false
square(s(x)) → s(plus(square(x), double(x)))
square(0) → 0
double(0) → 0
double(s(x)) → s(s(double(x)))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))

The set Q consists of the following terms:

double(0)
square(0)
le(s(x0), s(x1))
plus(x0, s(x1))
le(s(x0), 0)
plus(x0, 0)
le(0, x0)
square(s(x0))
double(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.