Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)



QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → GT(x, plus(y, z))
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
GT(s(u), s(v)) → GT(u, v)
PLUS(n, s(m)) → PLUS(n, m)
F(true, x, y, z) → PLUS(y, z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))

The TRS R consists of the following rules:

f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → GT(x, plus(y, z))
F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
GT(s(u), s(v)) → GT(u, v)
PLUS(n, s(m)) → PLUS(n, m)
F(true, x, y, z) → PLUS(y, z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))

The TRS R consists of the following rules:

f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 3 SCCs with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ UsableRulesProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GT(s(u), s(v)) → GT(u, v)

The TRS R consists of the following rules:

f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GT(s(u), s(v)) → GT(u, v)

R is empty.
The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ QDPSizeChangeProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GT(s(u), s(v)) → GT(u, v)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [16] together with the size-change analysis [27] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ UsableRulesProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(n, s(m)) → PLUS(n, m)

The TRS R consists of the following rules:

f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(n, s(m)) → PLUS(n, m)

R is empty.
The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ QDPSizeChangeProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(n, s(m)) → PLUS(n, m)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [16] together with the size-change analysis [27] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))

The TRS R consists of the following rules:

f(true, x, y, z) → f(gt(x, plus(y, z)), x, s(y), z)
f(true, x, y, z) → f(gt(x, plus(y, z)), x, y, s(z))
plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
QDP
                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)
f(true, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

f(true, x0, x1, x2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
QDP
                    ↳ Narrowing
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [13] the rule F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z) at position [0] we obtained the following new rules:

F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, s(x0), s(x1))
F(true, y0, x0, 0) → F(gt(y0, x0), y0, s(x0), 0)
F(true, 0, y1, y2) → F(false, 0, s(y1), y2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
QDP
                        ↳ DependencyGraphProof
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, x0, 0) → F(gt(y0, x0), y0, s(x0), 0)
F(true, 0, y1, y2) → F(false, 0, s(y1), y2)
F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, s(x0), s(x1))
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
QDP
                              ↳ Narrowing
                            ↳ QDP
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, s(x0), s(x1))
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [13] the rule F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z)) at position [0] we obtained the following new rules:

F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, x0, s(s(x1)))
F(true, y0, x0, 0) → F(gt(y0, x0), y0, x0, s(0))
F(true, 0, y1, y2) → F(false, 0, y1, s(y2))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                              ↳ Narrowing
QDP
                                  ↳ DependencyGraphProof
                            ↳ QDP
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, x0, s(s(x1)))
F(true, y0, x0, 0) → F(gt(y0, x0), y0, x0, s(0))
F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, s(x0), s(x1))
F(true, 0, y1, y2) → F(false, 0, y1, s(y2))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
QDP
                                      ↳ Instantiation
                            ↳ QDP
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, x0, s(s(x1)))
F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, s(x0), s(x1))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [13] the rule F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, s(x0), s(x1)) we obtained the following new rules:

F(true, z0, z1, s(s(z2))) → F(gt(z0, s(plus(z1, s(z2)))), z0, s(z1), s(s(z2)))
F(true, z0, s(z1), s(z2)) → F(gt(z0, s(plus(s(z1), z2))), z0, s(s(z1)), s(z2))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Instantiation
QDP
                                          ↳ Rewriting
                            ↳ QDP
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, x0, s(s(x1)))
F(true, z0, z1, s(s(z2))) → F(gt(z0, s(plus(z1, s(z2)))), z0, s(z1), s(s(z2)))
F(true, z0, s(z1), s(z2)) → F(gt(z0, s(plus(s(z1), z2))), z0, s(s(z1)), s(z2))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule F(true, z0, z1, s(s(z2))) → F(gt(z0, s(plus(z1, s(z2)))), z0, s(z1), s(s(z2))) at position [0,1,0] we obtained the following new rules:

F(true, z0, z1, s(s(z2))) → F(gt(z0, s(s(plus(z1, z2)))), z0, s(z1), s(s(z2)))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Instantiation
                                        ↳ QDP
                                          ↳ Rewriting
QDP
                                              ↳ Instantiation
                            ↳ QDP
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, z1, s(s(z2))) → F(gt(z0, s(s(plus(z1, z2)))), z0, s(z1), s(s(z2)))
F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, x0, s(s(x1)))
F(true, z0, s(z1), s(z2)) → F(gt(z0, s(plus(s(z1), z2))), z0, s(s(z1)), s(z2))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [13] the rule F(true, y0, x0, s(x1)) → F(gt(y0, s(plus(x0, x1))), y0, x0, s(s(x1))) we obtained the following new rules:

F(true, z0, s(s(z1)), s(z2)) → F(gt(z0, s(plus(s(s(z1)), z2))), z0, s(s(z1)), s(s(z2)))
F(true, z0, z1, s(s(z2))) → F(gt(z0, s(plus(z1, s(z2)))), z0, z1, s(s(s(z2))))
F(true, z0, s(z1), s(s(z2))) → F(gt(z0, s(plus(s(z1), s(z2)))), z0, s(z1), s(s(s(z2))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Instantiation
                                        ↳ QDP
                                          ↳ Rewriting
                                            ↳ QDP
                                              ↳ Instantiation
QDP
                                                  ↳ Rewriting
                            ↳ QDP
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, s(s(z1)), s(z2)) → F(gt(z0, s(plus(s(s(z1)), z2))), z0, s(s(z1)), s(s(z2)))
F(true, z0, z1, s(s(z2))) → F(gt(z0, s(s(plus(z1, z2)))), z0, s(z1), s(s(z2)))
F(true, z0, z1, s(s(z2))) → F(gt(z0, s(plus(z1, s(z2)))), z0, z1, s(s(s(z2))))
F(true, z0, s(z1), s(s(z2))) → F(gt(z0, s(plus(s(z1), s(z2)))), z0, s(z1), s(s(s(z2))))
F(true, z0, s(z1), s(z2)) → F(gt(z0, s(plus(s(z1), z2))), z0, s(s(z1)), s(z2))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule F(true, z0, z1, s(s(z2))) → F(gt(z0, s(plus(z1, s(z2)))), z0, z1, s(s(s(z2)))) at position [0,1,0] we obtained the following new rules:

F(true, z0, z1, s(s(z2))) → F(gt(z0, s(s(plus(z1, z2)))), z0, z1, s(s(s(z2))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Instantiation
                                        ↳ QDP
                                          ↳ Rewriting
                                            ↳ QDP
                                              ↳ Instantiation
                                                ↳ QDP
                                                  ↳ Rewriting
QDP
                                                      ↳ Rewriting
                            ↳ QDP
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, z1, s(s(z2))) → F(gt(z0, s(s(plus(z1, z2)))), z0, s(z1), s(s(z2)))
F(true, z0, s(s(z1)), s(z2)) → F(gt(z0, s(plus(s(s(z1)), z2))), z0, s(s(z1)), s(s(z2)))
F(true, z0, z1, s(s(z2))) → F(gt(z0, s(s(plus(z1, z2)))), z0, z1, s(s(s(z2))))
F(true, z0, s(z1), s(z2)) → F(gt(z0, s(plus(s(z1), z2))), z0, s(s(z1)), s(z2))
F(true, z0, s(z1), s(s(z2))) → F(gt(z0, s(plus(s(z1), s(z2)))), z0, s(z1), s(s(s(z2))))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
By rewriting [13] the rule F(true, z0, s(z1), s(s(z2))) → F(gt(z0, s(plus(s(z1), s(z2)))), z0, s(z1), s(s(s(z2)))) at position [0,1,0] we obtained the following new rules:

F(true, z0, s(z1), s(s(z2))) → F(gt(z0, s(s(plus(s(z1), z2)))), z0, s(z1), s(s(s(z2))))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ DependencyGraphProof
                                    ↳ QDP
                                      ↳ Instantiation
                                        ↳ QDP
                                          ↳ Rewriting
                                            ↳ QDP
                                              ↳ Instantiation
                                                ↳ QDP
                                                  ↳ Rewriting
                                                    ↳ QDP
                                                      ↳ Rewriting
QDP
                            ↳ QDP
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, s(s(z1)), s(z2)) → F(gt(z0, s(plus(s(s(z1)), z2))), z0, s(s(z1)), s(s(z2)))
F(true, z0, z1, s(s(z2))) → F(gt(z0, s(s(plus(z1, z2)))), z0, s(z1), s(s(z2)))
F(true, z0, s(z1), s(s(z2))) → F(gt(z0, s(s(plus(s(z1), z2)))), z0, s(z1), s(s(s(z2))))
F(true, z0, z1, s(s(z2))) → F(gt(z0, s(s(plus(z1, z2)))), z0, z1, s(s(s(z2))))
F(true, z0, s(z1), s(z2)) → F(gt(z0, s(plus(s(z1), z2))), z0, s(s(z1)), s(z2))

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
QDP
                              ↳ UsableRulesProof
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, x0, 0) → F(gt(y0, x0), y0, s(x0), 0)

The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [13] we can delete all non-usable rules [14] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                            ↳ QDP
                              ↳ UsableRulesProof
QDP
                                  ↳ QReductionProof
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, x0, 0) → F(gt(y0, x0), y0, s(x0), 0)

The TRS R consists of the following rules:

gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

plus(x0, s(x1))
plus(x0, 0)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                            ↳ QDP
                              ↳ UsableRulesProof
                                ↳ QDP
                                  ↳ QReductionProof
QDP
                                      ↳ Instantiation
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, y0, x0, 0) → F(gt(y0, x0), y0, s(x0), 0)

The TRS R consists of the following rules:

gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
gt(s(x0), s(x1))
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [13] the rule F(true, y0, x0, 0) → F(gt(y0, x0), y0, s(x0), 0) we obtained the following new rules:

F(true, z0, s(z1), 0) → F(gt(z0, s(z1)), z0, s(s(z1)), 0)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                      ↳ QDP
                        ↳ DependencyGraphProof
                          ↳ AND
                            ↳ QDP
                            ↳ QDP
                              ↳ UsableRulesProof
                                ↳ QDP
                                  ↳ QReductionProof
                                    ↳ QDP
                                      ↳ Instantiation
QDP
                    ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

F(true, z0, s(z1), 0) → F(gt(z0, s(z1)), z0, s(s(z1)), 0)

The TRS R consists of the following rules:

gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
gt(s(x0), s(x1))
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus with the following steps:
Note that final constraints are written in bold face.

For Pair F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z) the following chains were created:



For Pair F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z)) the following chains were created:



To summarize, we get the following constraints P for the following pairs.
The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved.
Polynomial interpretation [21]:

POL(0) = 0   
POL(F(x1, x2, x3, x4)) = -1 + x2 - x3 - x4   
POL(c) = -1   
POL(false) = 1   
POL(gt(x1, x2)) = x2   
POL(plus(x1, x2)) = 1   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following pairs are in P>:

F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
The following pairs are in Pbound:

F(true, x, y, z) → F(gt(x, plus(y, z)), x, s(y), z)
F(true, x, y, z) → F(gt(x, plus(y, z)), x, y, s(z))
There are no usable rules

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ UsableRulesProof
              ↳ QDP
                ↳ QReductionProof
                  ↳ QDP
                    ↳ Narrowing
                    ↳ NonInfProof
QDP
                        ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

plus(n, 0) → n
plus(n, s(m)) → s(plus(n, m))
gt(0, v) → false
gt(s(u), 0) → true
gt(s(u), s(v)) → gt(u, v)

The set Q consists of the following terms:

gt(0, x0)
plus(x0, s(x1))
gt(s(x0), s(x1))
plus(x0, 0)
gt(s(x0), 0)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.