Term Rewriting System R: [T, L, Tp, Lp, S, X, Sp, Xp, K, Y, Z] and(false, false) -> false and(true, false) -> false and(false, true) -> false and(true, true) -> true eq(nil, nil) -> true eq(cons(T, L), nil) -> false eq(nil, cons(T, L)) -> false eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) eq(var(L), var(Lp)) -> eq(L, Lp) eq(var(L), apply(T, S)) -> false eq(var(L), lambda(X, T)) -> false eq(apply(T, S), var(L)) -> false eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) eq(apply(T, S), lambda(X, Tp)) -> false eq(lambda(X, T), var(L)) -> false eq(lambda(X, T), apply(Tp, Sp)) -> false eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) if(true, var(K), var(L)) -> var(K) if(false, var(K), var(L)) -> var(L) ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) Termination of R to be shown. This program has no overlaps, so it is sufficient to show innermost termination. R contains the following Dependency Pairs: EQ(apply(T, S), apply(Tp, Sp)) -> AND(eq(T, Tp), eq(S, Sp)) EQ(apply(T, S), apply(Tp, Sp)) -> EQ(T, Tp) EQ(apply(T, S), apply(Tp, Sp)) -> EQ(S, Sp) EQ(var(L), var(Lp)) -> EQ(L, Lp) EQ(lambda(X, T), lambda(Xp, Tp)) -> AND(eq(T, Tp), eq(X, Xp)) EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(T, Tp) EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(X, Xp) EQ(cons(T, L), cons(Tp, Lp)) -> AND(eq(T, Tp), eq(L, Lp)) EQ(cons(T, L), cons(Tp, Lp)) -> EQ(T, Tp) EQ(cons(T, L), cons(Tp, Lp)) -> EQ(L, Lp) REN(var(L), var(K), var(Lp)) -> IF(eq(L, Lp), var(K), var(Lp)) REN(var(L), var(K), var(Lp)) -> EQ(L, Lp) REN(X, Y, lambda(Z, T)) -> REN(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)) REN(X, Y, lambda(Z, T)) -> REN(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T) REN(X, Y, apply(T, S)) -> REN(X, Y, T) REN(X, Y, apply(T, S)) -> REN(X, Y, S) Furthermore, R contains two SCCs. SCC1: EQ(cons(T, L), cons(Tp, Lp)) -> EQ(L, Lp) EQ(cons(T, L), cons(Tp, Lp)) -> EQ(T, Tp) EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(X, Xp) EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(T, Tp) EQ(var(L), var(Lp)) -> EQ(L, Lp) EQ(apply(T, S), apply(Tp, Sp)) -> EQ(S, Sp) EQ(apply(T, S), apply(Tp, Sp)) -> EQ(T, Tp) Removing rules from R by ordering and analyzing Dependency Pairs, Usable Rules, and Usable Equations. This is possible by using the following (C_E-compatible) Polynomial ordering. Polynomial interpretation: POL(lambda(x_1, x_2)) = 1 + x_1 + x_2 POL(EQ(x_1, x_2)) = 1 + x_1 + x_2 POL(apply(x_1, x_2)) = 1 + x_1 + x_2 POL(var(x_1)) = 1 + x_1 POL(cons(x_1, x_2)) = 1 + x_1 + x_2 The following Dependency Pairs can be deleted: EQ(cons(T, L), cons(Tp, Lp)) -> EQ(L, Lp) EQ(cons(T, L), cons(Tp, Lp)) -> EQ(T, Tp) EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(X, Xp) EQ(lambda(X, T), lambda(Xp, Tp)) -> EQ(T, Tp) EQ(var(L), var(Lp)) -> EQ(L, Lp) EQ(apply(T, S), apply(Tp, Sp)) -> EQ(S, Sp) EQ(apply(T, S), apply(Tp, Sp)) -> EQ(T, Tp) This transformation is resulting in no new subcycles. SCC2: REN(X, Y, apply(T, S)) -> REN(X, Y, S) REN(X, Y, apply(T, S)) -> REN(X, Y, T) REN(X, Y, lambda(Z, T)) -> REN(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T) REN(X, Y, lambda(Z, T)) -> REN(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T)) By using a polynomial ordering, at least one Dependency Pair of this SCC can be strictly oriented. Additionally, the following rules can be oriented: ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) if(false, var(K), var(L)) -> var(L) if(true, var(K), var(L)) -> var(K) Used ordering: Polynomial ordering with Polynomial interpretation: POL(nil) = 0 POL(lambda(x_1, x_2)) = 1 + x_2 POL(ren(x_1, x_2, x_3)) = x_3 POL(eq(x_1, x_2)) = 0 POL(apply(x_1, x_2)) = 1 + x_1 + x_2 POL(REN(x_1, x_2, x_3)) = x_3 POL(and(x_1, x_2)) = 0 POL(true) = 0 POL(var(x_1)) = 0 POL(if(x_1, x_2, x_3)) = 0 POL(false) = 0 POL(cons(x_1, x_2)) = 0 resulting in no subcycles. Termination of R successfully shown. Duration: 2.636 seconds.