R
↳Overlay and local confluence Check
R
↳OC
→TRS2
↳Dependency Pair Analysis
PRIMES -> SIEVE(from(s(s(0))))
PRIMES -> FROM(s(s(0)))
FROM(X) -> FROM(s(X))
FILTER(s(s(X)), cons(Y, Z)) -> IF(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
FILTER(s(s(X)), cons(Y, Z)) -> FILTER(s(s(X)), Z)
FILTER(s(s(X)), cons(Y, Z)) -> FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) -> SIEVE(Y)
SIEVE(cons(X, Y)) -> FILTER(X, sieve(Y))
SIEVE(cons(X, Y)) -> SIEVE(Y)
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
SIEVE(cons(X, Y)) -> SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) -> SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) -> FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) -> FILTER(s(s(X)), Z)
SIEVE(cons(X, Y)) -> FILTER(X, sieve(Y))
primes -> sieve(from(s(s(0))))
from(X) -> cons(X, from(s(X)))
head(cons(X, Y)) -> X
tail(cons(X, Y)) -> Y
if(true, X, Y) -> X
if(false, X, Y) -> Y
filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
...
→DP Problem 3
↳Negative Polynomial Order
→DP Problem 2
↳UsableRules
SIEVE(cons(X, Y)) -> SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) -> SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) -> FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) -> FILTER(s(s(X)), Z)
SIEVE(cons(X, Y)) -> FILTER(X, sieve(Y))
filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))
innermost
SIEVE(cons(X, Y)) -> SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) -> SIEVE(Y)
FILTER(s(s(X)), cons(Y, Z)) -> FILTER(X, sieve(Y))
FILTER(s(s(X)), cons(Y, Z)) -> FILTER(s(s(X)), Z)
SIEVE(cons(X, Y)) -> FILTER(X, sieve(Y))
filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))
POL( SIEVE(x1) ) = x1
POL( cons(x1, x2) ) = x1 + x2 + 1
POL( FILTER(x1, x2) ) = x2
POL( sieve(x1) ) = x1
POL( filter(x1, x2) ) = 0
POL( if(x1, ..., x3) ) = 0
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
...
→DP Problem 4
↳Dependency Graph
→DP Problem 2
↳UsableRules
filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
FROM(X) -> FROM(s(X))
primes -> sieve(from(s(s(0))))
from(X) -> cons(X, from(s(X)))
head(cons(X, Y)) -> X
tail(cons(X, Y)) -> Y
if(true, X, Y) -> X
if(false, X, Y) -> Y
filter(s(s(X)), cons(Y, Z)) -> if(divides(s(s(X)), Y), filter(s(s(X)), Z), cons(Y, filter(X, sieve(Y))))
sieve(cons(X, Y)) -> cons(X, filter(X, sieve(Y)))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
...
→DP Problem 5
↳Non Termination
FROM(X) -> FROM(s(X))
none
innermost
FROM(X) -> FROM(s(X))