TRS
↳Reversing
↳Rev
↳DPs
a(d(x)) -> d(c(b(a(x))))
a(c(x)) -> x
b(c(x)) -> c(d(a(b(x))))
b(d(x)) -> x
d'(a'(x)) -> a'(b'(c'(d'(x))))
d'(b'(x)) -> x
c'(a'(x)) -> x
c'(b'(x)) -> b'(a'(d'(c'(x))))
TRS
↳Rev
↳Reversing
↳DPs
a(d(x)) -> d(c(b(a(x))))
a(c(x)) -> x
b(c(x)) -> c(d(a(b(x))))
b(d(x)) -> x
d'(a'(x)) -> a'(b'(c'(d'(x))))
d'(b'(x)) -> x
c'(a'(x)) -> x
c'(b'(x)) -> b'(a'(d'(c'(x))))
TRS
↳Rev
↳Rev
↳Dependency Pair Analysis
A(d(x)) -> B(a(x))
A(d(x)) -> A(x)
B(c(x)) -> A(b(x))
B(c(x)) -> B(x)
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳Non-Overlappingness Check
B(c(x)) -> B(x)
A(d(x)) -> A(x)
B(c(x)) -> A(b(x))
A(d(x)) -> B(a(x))
a(d(x)) -> d(c(b(a(x))))
a(c(x)) -> x
b(c(x)) -> c(d(a(b(x))))
b(d(x)) -> x
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳Narrowing Transformation
B(c(x)) -> B(x)
A(d(x)) -> A(x)
B(c(x)) -> A(b(x))
A(d(x)) -> B(a(x))
a(d(x)) -> d(c(b(a(x))))
a(c(x)) -> x
b(c(x)) -> c(d(a(b(x))))
b(d(x)) -> x
innermost
two new Dependency Pairs are created:
A(d(x)) -> B(a(x))
A(d(d(x''))) -> B(d(c(b(a(x'')))))
A(d(c(x''))) -> B(x'')
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳Nar
...
→DP Problem 3
↳Narrowing Transformation
A(d(c(x''))) -> B(x'')
A(d(x)) -> A(x)
B(c(x)) -> A(b(x))
B(c(x)) -> B(x)
a(d(x)) -> d(c(b(a(x))))
a(c(x)) -> x
b(c(x)) -> c(d(a(b(x))))
b(d(x)) -> x
innermost
two new Dependency Pairs are created:
B(c(x)) -> A(b(x))
B(c(c(x''))) -> A(c(d(a(b(x'')))))
B(c(d(x''))) -> A(x'')
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳Nar
...
→DP Problem 4
↳Usable Rules (Innermost)
A(d(x)) -> A(x)
B(c(d(x''))) -> A(x'')
B(c(x)) -> B(x)
A(d(c(x''))) -> B(x'')
a(d(x)) -> d(c(b(a(x))))
a(c(x)) -> x
b(c(x)) -> c(d(a(b(x))))
b(d(x)) -> x
innermost
TRS
↳Rev
↳Rev
↳DPs
→DP Problem 1
↳NOC
→DP Problem 2
↳Nar
...
→DP Problem 5
↳Modular Removal of Rules
A(d(x)) -> A(x)
B(c(d(x''))) -> A(x'')
B(c(x)) -> B(x)
A(d(c(x''))) -> B(x'')
none
innermost
POL(c(x1)) = x1 POL(B(x1)) = x1 POL(d(x1)) = x1 POL(A(x1)) = x1
A(d(x)) -> A(x)
B(c(d(x''))) -> A(x'')
B(c(x)) -> B(x)
A(d(c(x''))) -> B(x'')
Termination of R successfully shown.
Duration:
0:15 minutes