R
↳Dependency Pair Analysis
APP(g, app(g, x)) -> APP(g, app(h, app(g, x)))
APP(g, app(g, x)) -> APP(h, app(g, x))
APP(h, app(h, x)) -> APP(h, app(app(f, app(h, x)), x))
APP(h, app(h, x)) -> APP(app(f, app(h, x)), x)
APP(h, app(h, x)) -> APP(f, app(h, x))
R
↳DPs
→DP Problem 1
↳Negative Polynomial Order
APP(g, app(g, x)) -> APP(g, app(h, app(g, x)))
app(g, app(h, app(g, x))) -> app(g, x)
app(g, app(g, x)) -> app(g, app(h, app(g, x)))
app(h, app(h, x)) -> app(h, app(app(f, app(h, x)), x))
APP(g, app(g, x)) -> APP(g, app(h, app(g, x)))
app(h, app(h, x)) -> app(h, app(app(f, app(h, x)), x))
app(g, app(h, app(g, x))) -> app(g, x)
app(g, app(g, x)) -> app(g, app(h, app(g, x)))
G(g(x)) -> G(h(g(x)))
h(h(x)) -> h(f(h(x), x))
g(h(g(x))) -> g(x)
g(g(x)) -> g(h(g(x)))
G(g(x)) -> G(h(g(x)))
APP(g, app(g, x)) -> APP(g, app(h, app(g, x)))
h(h(x)) -> h(f(h(x), x))
g(h(g(x))) -> g(x)
g(g(x)) -> g(h(g(x)))
POL( G(x1) ) = x1
POL( g(x1) ) = 1
POL( h(x1) ) = 0
R
↳DPs
→DP Problem 1
↳Neg POLO
→DP Problem 2
↳Dependency Graph
app(g, app(h, app(g, x))) -> app(g, x)
app(g, app(g, x)) -> app(g, app(h, app(g, x)))
app(h, app(h, x)) -> app(h, app(app(f, app(h, x)), x))