Term Rewriting System R:
[x, y, z]
app(app(*, x), app(app(+, y), z)) -> app(app(+, app(app(*, x), y)), app(app(*, x), z))

Termination of R to be shown.



   R
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
OC
       →TRS2
Dependency Pair Analysis



R contains the following Dependency Pairs:

APP(app(*, x), app(app(+, y), z)) -> APP(app(+, app(app(*, x), y)), app(app(*, x), z))
APP(app(*, x), app(app(+, y), z)) -> APP(+, app(app(*, x), y))
APP(app(*, x), app(app(+, y), z)) -> APP(app(*, x), y)
APP(app(*, x), app(app(+, y), z)) -> APP(app(*, x), z)

Furthermore, R contains one SCC.


   R
OC
       →TRS2
DPs
           →DP Problem 1
Usable Rules (Innermost)


Dependency Pairs:

APP(app(*, x), app(app(+, y), z)) -> APP(app(*, x), z)
APP(app(*, x), app(app(+, y), z)) -> APP(app(*, x), y)


Rule:


app(app(*, x), app(app(+, y), z)) -> app(app(+, app(app(*, x), y)), app(app(*, x), z))


Strategy:

innermost




As we are in the innermost case, we can delete all 1 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
             ...
               →DP Problem 2
A-Transformation


Dependency Pairs:

APP(app(*, x), app(app(+, y), z)) -> APP(app(*, x), z)
APP(app(*, x), app(app(+, y), z)) -> APP(app(*, x), y)


Rule:

none


Strategy:

innermost




We have an applicative DP problem with proper arity. Thus we can use the A-Transformation to obtain one new DP problem which consists of the A-transformed TRSs.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
             ...
               →DP Problem 3
Size-Change Principle


Dependency Pairs:

*'(x, +(y, z)) -> *'(x, z)
*'(x, +(y, z)) -> *'(x, y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. *'(x, +(y, z)) -> *'(x, z)
  2. *'(x, +(y, z)) -> *'(x, y)
and get the following Size-Change Graph(s):
{1, 2} , {1, 2}
1=1
2>2

which lead(s) to this/these maximal multigraph(s):
{1, 2} , {1, 2}
1=1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
+(x1, x2) -> +(x1, x2)

We obtain no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes