R
↳Dependency Pair Analysis
F(x, a(b(y))) -> F(a(b(x)), y)
F(x, b(c(y))) -> F(b(c(x)), y)
F(x, c(a(y))) -> F(c(a(x)), y)
F(a(x), y) -> F(x, a(y))
F(b(x), y) -> F(x, b(y))
F(c(x), y) -> F(x, c(y))
R
↳DPs
→DP Problem 1
↳Modular Removal of Rules
F(b(x), y) -> F(x, b(y))
F(a(x), y) -> F(x, a(y))
F(c(x), y) -> F(x, c(y))
F(x, c(a(y))) -> F(c(a(x)), y)
F(x, b(c(y))) -> F(b(c(x)), y)
F(x, a(b(y))) -> F(a(b(x)), y)
f(x, a(b(y))) -> f(a(b(x)), y)
f(x, b(c(y))) -> f(b(c(x)), y)
f(x, c(a(y))) -> f(c(a(x)), y)
f(a(x), y) -> f(x, a(y))
f(b(x), y) -> f(x, b(y))
f(c(x), y) -> f(x, c(y))
POL(c(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = x1 POL(F(x1, x2)) = 1 + x1 + x2
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Non-Overlappingness Check
F(b(x), y) -> F(x, b(y))
F(a(x), y) -> F(x, a(y))
F(c(x), y) -> F(x, c(y))
F(x, c(a(y))) -> F(c(a(x)), y)
F(x, b(c(y))) -> F(b(c(x)), y)
F(x, a(b(y))) -> F(a(b(x)), y)
none
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳NOC
...
→DP Problem 3
↳Scc To SRS
F(b(x), y) -> F(x, b(y))
F(a(x), y) -> F(x, a(y))
F(c(x), y) -> F(x, c(y))
F(x, c(a(y))) -> F(c(a(x)), y)
F(x, b(c(y))) -> F(b(c(x)), y)
F(x, a(b(y))) -> F(a(b(x)), y)
none
innermost
There is only one SCC in the graph and, thus, we obtain one new DP problem.
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳NOC
...
→DP Problem 4
↳Modular Removal of Rules
A(b(x)) -> A(x)
B(c(x)) -> B(x)
C(a(x)) -> C(x)
B(c(x)) -> C(b(x))
A(b(x)) -> B(a(x))
C(a(x)) -> A(c(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
b(c(x)) -> c(b(x))
a(b(x)) -> b(a(x))
c(a(x)) -> a(c(x))
POL(c(x1)) = x1 POL(C(x1)) = x1 POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = 1 + x1 POL(A(x1)) = 1 + x1
C(a(x)) -> C(x)
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳NOC
...
→DP Problem 5
↳Modular Removal of Rules
A(b(x)) -> A(x)
B(c(x)) -> B(x)
B(c(x)) -> C(b(x))
A(b(x)) -> B(a(x))
C(a(x)) -> A(c(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
b(c(x)) -> c(b(x))
a(b(x)) -> b(a(x))
c(a(x)) -> a(c(x))
POL(c(x1)) = x1 POL(C(x1)) = x1 POL(B(x1)) = 1 + x1 POL(b(x1)) = 1 + x1 POL(a(x1)) = x1 POL(A(x1)) = x1
A(b(x)) -> A(x)
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳NOC
...
→DP Problem 6
↳Modular Removal of Rules
B(c(x)) -> B(x)
B(c(x)) -> C(b(x))
A(b(x)) -> B(a(x))
C(a(x)) -> A(c(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
b(c(x)) -> c(b(x))
a(b(x)) -> b(a(x))
c(a(x)) -> a(c(x))
POL(c(x1)) = 1 + x1 POL(C(x1)) = 1 + x1 POL(B(x1)) = x1 POL(b(x1)) = x1 POL(a(x1)) = x1 POL(A(x1)) = x1
B(c(x)) -> B(x)
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳NOC
...
→DP Problem 7
↳Negative Polynomial Order
B(c(x)) -> C(b(x))
A(b(x)) -> B(a(x))
C(a(x)) -> A(c(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))
B(c(x)) -> C(b(x))
b(c(x)) -> c(b(x))
a(b(x)) -> b(a(x))
c(a(x)) -> a(c(x))
POL( B(x1) ) = 1
POL( C(x1) ) = 0
POL( A(x1) ) = x1
POL( c(x1) ) = 0
POL( b(x1) ) = 1
POL( a(x1) ) = x1
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳NOC
...
→DP Problem 8
↳Dependency Graph
A(b(x)) -> B(a(x))
C(a(x)) -> A(c(x))
c(a(x)) -> a(c(x))
a(b(x)) -> b(a(x))
b(c(x)) -> c(b(x))