Term Rewriting System R:
[X, L, X1, X2]
active(incr(nil)) -> mark(nil)
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(adx(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(nats) -> mark(adx(zeros))
active(zeros) -> mark(cons(0, zeros))
active(head(cons(X, L))) -> mark(X)
active(tail(cons(X, L))) -> mark(L)
active(incr(X)) -> incr(active(X))
active(cons(X1, X2)) -> cons(active(X1), X2)
active(s(X)) -> s(active(X))
active(adx(X)) -> adx(active(X))
active(head(X)) -> head(active(X))
active(tail(X)) -> tail(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
s(mark(X)) -> mark(s(X))
s(ok(X)) -> ok(s(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(incr(X)) -> incr(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(s(X)) -> s(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(nats) -> ok(nats)
proper(zeros) -> ok(zeros)
proper(0) -> ok(0)
proper(head(X)) -> head(proper(X))
proper(tail(X)) -> tail(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Termination of R to be shown.
R
↳Removing Redundant Rules
Removing the following rules from R which fullfill a polynomial ordering:
active(adx(nil)) -> mark(nil)
where the Polynomial interpretation:
POL(proper(x1)) | = x1 |
POL(adx(x1)) | = 2·x1 |
POL(tail(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(ok(x1)) | = x1 |
POL(top(x1)) | = 1 + x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(nats) | = 0 |
POL(nil) | = 1 |
POL(s(x1)) | = x1 |
POL(head(x1)) | = x1 |
POL(zeros) | = 0 |
was used.
Not all Rules of R can be deleted, so we still have to regard a part of R.
R
↳RRRPolo
→TRS2
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVE(cons(X1, X2)) -> CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
ACTIVE(tail(X)) -> TAIL(active(X))
ACTIVE(tail(X)) -> ACTIVE(X)
ACTIVE(adx(cons(X, L))) -> INCR(cons(X, adx(L)))
ACTIVE(adx(cons(X, L))) -> CONS(X, adx(L))
ACTIVE(adx(cons(X, L))) -> ADX(L)
ACTIVE(head(X)) -> HEAD(active(X))
ACTIVE(head(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ADX(active(X))
ACTIVE(adx(X)) -> ACTIVE(X)
ACTIVE(zeros) -> CONS(0, zeros)
ACTIVE(incr(cons(X, L))) -> CONS(s(X), incr(L))
ACTIVE(incr(cons(X, L))) -> S(X)
ACTIVE(incr(cons(X, L))) -> INCR(L)
ACTIVE(incr(X)) -> INCR(active(X))
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(s(X)) -> S(active(X))
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(nats) -> ADX(zeros)
CONS(mark(X1), X2) -> CONS(X1, X2)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
TAIL(mark(X)) -> TAIL(X)
TAIL(ok(X)) -> TAIL(X)
PROPER(tail(X)) -> TAIL(proper(X))
PROPER(tail(X)) -> PROPER(X)
PROPER(adx(X)) -> ADX(proper(X))
PROPER(adx(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(incr(X)) -> INCR(proper(X))
PROPER(incr(X)) -> PROPER(X)
PROPER(head(X)) -> HEAD(proper(X))
PROPER(head(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
INCR(mark(X)) -> INCR(X)
INCR(ok(X)) -> INCR(X)
ADX(mark(X)) -> ADX(X)
ADX(ok(X)) -> ADX(X)
HEAD(mark(X)) -> HEAD(X)
HEAD(ok(X)) -> HEAD(X)
S(ok(X)) -> S(X)
S(mark(X)) -> S(X)
Furthermore, R contains nine SCCs.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
Dependency Pairs:
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
CONS(mark(X1), X2) -> CONS(X1, X2)
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
We number the DPs as follows:
- CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
- CONS(mark(X1), X2) -> CONS(X1, X2)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
Dependency Pairs:
TAIL(ok(X)) -> TAIL(X)
TAIL(mark(X)) -> TAIL(X)
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
We number the DPs as follows:
- TAIL(ok(X)) -> TAIL(X)
- TAIL(mark(X)) -> TAIL(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
Dependency Pairs:
INCR(ok(X)) -> INCR(X)
INCR(mark(X)) -> INCR(X)
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
We number the DPs as follows:
- INCR(ok(X)) -> INCR(X)
- INCR(mark(X)) -> INCR(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
Dependency Pairs:
ADX(ok(X)) -> ADX(X)
ADX(mark(X)) -> ADX(X)
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
We number the DPs as follows:
- ADX(ok(X)) -> ADX(X)
- ADX(mark(X)) -> ADX(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Size-Change Principle
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
Dependency Pairs:
HEAD(ok(X)) -> HEAD(X)
HEAD(mark(X)) -> HEAD(X)
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
We number the DPs as follows:
- HEAD(ok(X)) -> HEAD(X)
- HEAD(mark(X)) -> HEAD(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳Size-Change Principle
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
Dependency Pairs:
S(mark(X)) -> S(X)
S(ok(X)) -> S(X)
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
We number the DPs as follows:
- S(mark(X)) -> S(X)
- S(ok(X)) -> S(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳Size-Change Principle
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
Dependency Pairs:
ACTIVE(s(X)) -> ACTIVE(X)
ACTIVE(incr(X)) -> ACTIVE(X)
ACTIVE(adx(X)) -> ACTIVE(X)
ACTIVE(head(X)) -> ACTIVE(X)
ACTIVE(tail(X)) -> ACTIVE(X)
ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
We number the DPs as follows:
- ACTIVE(s(X)) -> ACTIVE(X)
- ACTIVE(incr(X)) -> ACTIVE(X)
- ACTIVE(adx(X)) -> ACTIVE(X)
- ACTIVE(head(X)) -> ACTIVE(X)
- ACTIVE(tail(X)) -> ACTIVE(X)
- ACTIVE(cons(X1, X2)) -> ACTIVE(X1)
and get the following Size-Change Graph(s): {6, 5, 4, 3, 2, 1} | , | {6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {6, 5, 4, 3, 2, 1} | , | {6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
adx(x1) -> adx(x1)
cons(x1, x2) -> cons(x1, x2)
tail(x1) -> tail(x1)
incr(x1) -> incr(x1)
s(x1) -> s(x1)
head(x1) -> head(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Size-Change Principle
→DP Problem 9
↳MRR
Dependency Pairs:
PROPER(s(X)) -> PROPER(X)
PROPER(head(X)) -> PROPER(X)
PROPER(incr(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(adx(X)) -> PROPER(X)
PROPER(tail(X)) -> PROPER(X)
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
We number the DPs as follows:
- PROPER(s(X)) -> PROPER(X)
- PROPER(head(X)) -> PROPER(X)
- PROPER(incr(X)) -> PROPER(X)
- PROPER(cons(X1, X2)) -> PROPER(X2)
- PROPER(cons(X1, X2)) -> PROPER(X1)
- PROPER(adx(X)) -> PROPER(X)
- PROPER(tail(X)) -> PROPER(X)
and get the following Size-Change Graph(s): {7, 6, 5, 4, 3, 2, 1} | , | {7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {7, 6, 5, 4, 3, 2, 1} | , | {7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
adx(x1) -> adx(x1)
cons(x1, x2) -> cons(x1, x2)
tail(x1) -> tail(x1)
incr(x1) -> incr(x1)
s(x1) -> s(x1)
head(x1) -> head(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳Modular Removal of Rules
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
We have the following set of usable rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(proper(x1)) | = x1 |
POL(adx(x1)) | = x1 |
POL(tail(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(nats) | = 0 |
POL(nil) | = 0 |
POL(s(x1)) | = x1 |
POL(zeros) | = 0 |
POL(head(x1)) | = x1 |
We have the following set D of usable symbols: {proper, adx, tail, incr, mark, TOP, ok, active, 0, cons, nats, nil, s, head, zeros}
No Dependency Pairs can be deleted.
2 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
...
→DP Problem 10
↳Modular Removal of Rules
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
We have the following set of usable rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
active(nats) -> mark(adx(zeros))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(proper(x1)) | = x1 |
POL(adx(x1)) | = x1 |
POL(tail(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = x1 |
POL(ok(x1)) | = x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(nats) | = 1 |
POL(nil) | = 0 |
POL(s(x1)) | = x1 |
POL(zeros) | = 0 |
POL(head(x1)) | = x1 |
We have the following set D of usable symbols: {proper, adx, tail, incr, mark, TOP, ok, active, 0, cons, nats, nil, s, head, zeros}
No Dependency Pairs can be deleted.
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:
active(nats) -> mark(adx(zeros))
The result of this processor delivers one new DP problem.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
...
→DP Problem 11
↳Modular Removal of Rules
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
We have the following set of usable rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
active(tail(cons(X, L))) -> mark(L)
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(proper(x1)) | = x1 |
POL(adx(x1)) | = x1 |
POL(tail(x1)) | = 1 + x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = x1 |
POL(ok(x1)) | = x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(nats) | = 0 |
POL(nil) | = 0 |
POL(s(x1)) | = x1 |
POL(zeros) | = 0 |
POL(head(x1)) | = x1 |
We have the following set D of usable symbols: {proper, adx, tail, incr, mark, TOP, ok, active, 0, cons, nats, nil, s, head, zeros}
No Dependency Pairs can be deleted.
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:
active(tail(cons(X, L))) -> mark(L)
The result of this processor delivers one new DP problem.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
...
→DP Problem 12
↳Modular Removal of Rules
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
We have the following set of usable rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(head(cons(X, L))) -> mark(X)
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(proper(x1)) | = x1 |
POL(adx(x1)) | = x1 |
POL(tail(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(nats) | = 0 |
POL(nil) | = 0 |
POL(s(x1)) | = x1 |
POL(zeros) | = 0 |
POL(head(x1)) | = 1 + x1 |
We have the following set D of usable symbols: {proper, adx, tail, incr, mark, TOP, ok, active, 0, cons, nats, nil, s, head, zeros}
No Dependency Pairs can be deleted.
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:
active(head(cons(X, L))) -> mark(X)
The result of this processor delivers one new DP problem.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
...
→DP Problem 13
↳Argument Filtering and Ordering
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
The following dependency pair can be strictly oriented:
TOP(mark(X)) -> TOP(proper(X))
The following usable rules w.r.t. the AFS can be oriented:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
Used ordering: Lexicographic Path Order with Precedence:
adx > incr > mark
zeros > mark
zeros > 0
resulting in one new DP problem.
Used Argument Filtering System: TOP(x1) -> x1
ok(x1) -> x1
active(x1) -> x1
head(x1) -> x1
cons(x1, x2) -> x1
adx(x1) -> adx(x1)
incr(x1) -> incr(x1)
mark(x1) -> mark(x1)
s(x1) -> x1
tail(x1) -> x1
proper(x1) -> x1
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
...
→DP Problem 14
↳Modular Removal of Rules
Dependency Pair:
TOP(ok(X)) -> TOP(active(X))
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
proper(nats) -> ok(nats)
proper(nil) -> ok(nil)
proper(tail(X)) -> tail(proper(X))
proper(adx(X)) -> adx(proper(X))
proper(zeros) -> ok(zeros)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(incr(X)) -> incr(proper(X))
proper(head(X)) -> head(proper(X))
proper(s(X)) -> s(proper(X))
proper(0) -> ok(0)
We have the following set of usable rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(adx(x1)) | = x1 |
POL(tail(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(nil) | = 0 |
POL(s(x1)) | = x1 |
POL(head(x1)) | = x1 |
POL(zeros) | = 0 |
We have the following set D of usable symbols: {adx, tail, incr, mark, ok, TOP, active, 0, cons, nil, s, head, zeros}
No Dependency Pairs can be deleted.
10 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳MRR
...
→DP Problem 15
↳Modular Removal of Rules
Dependency Pair:
TOP(ok(X)) -> TOP(active(X))
Rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
We have the following set of usable rules:
active(cons(X1, X2)) -> cons(active(X1), X2)
active(tail(X)) -> tail(active(X))
active(incr(nil)) -> mark(nil)
active(adx(cons(X, L))) -> mark(incr(cons(X, adx(L))))
active(head(X)) -> head(active(X))
active(adx(X)) -> adx(active(X))
active(zeros) -> mark(cons(0, zeros))
active(incr(cons(X, L))) -> mark(cons(s(X), incr(L)))
active(incr(X)) -> incr(active(X))
active(s(X)) -> s(active(X))
cons(mark(X1), X2) -> mark(cons(X1, X2))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
tail(mark(X)) -> mark(tail(X))
tail(ok(X)) -> ok(tail(X))
head(mark(X)) -> mark(head(X))
head(ok(X)) -> ok(head(X))
adx(mark(X)) -> mark(adx(X))
adx(ok(X)) -> ok(adx(X))
incr(mark(X)) -> mark(incr(X))
incr(ok(X)) -> ok(incr(X))
s(ok(X)) -> ok(s(X))
s(mark(X)) -> mark(s(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(adx(x1)) | = x1 |
POL(tail(x1)) | = x1 |
POL(incr(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = 1 + x1 |
POL(active(x1)) | = x1 |
POL(0) | = 0 |
POL(cons(x1, x2)) | = x1 + x2 |
POL(nil) | = 0 |
POL(s(x1)) | = x1 |
POL(head(x1)) | = x1 |
POL(zeros) | = 0 |
We have the following set D of usable symbols: {adx, tail, incr, mark, ok, TOP, active, 0, cons, nil, s, head, zeros}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
TOP(ok(X)) -> TOP(active(X))
No Rules can be deleted.
After the removal, there are no SCCs in the dependency graph which results in no DP problems which have to be solved.
Termination of R successfully shown.
Duration:
0:16 minutes