Term Rewriting System R:
[N, X, Y, X1, X2, XS]
fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, nadd(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
add(X1, X2) -> nadd(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(activate(X1), activate(X2))
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(X) -> X
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
FIB(N) -> SEL(N, fib1(s(0), s(0)))
FIB(N) -> FIB1(s(0), s(0))
ADD(s(X), Y) -> ADD(X, Y)
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) -> ACTIVATE(XS)
ACTIVATE(nfib1(X1, X2)) -> FIB1(activate(X1), activate(X2))
ACTIVATE(nfib1(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfib1(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ADD(activate(X1), activate(X2))
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
Furthermore, R contains three SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
Dependency Pair:
ADD(s(X), Y) -> ADD(X, Y)
Rules:
fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, nadd(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
add(X1, X2) -> nadd(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(activate(X1), activate(X2))
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(X) -> X
We number the DPs as follows:
- ADD(s(X), Y) -> ADD(X, Y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
Dependency Pairs:
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfib1(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(nfib1(X1, X2)) -> ACTIVATE(X1)
Rules:
fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, nadd(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
add(X1, X2) -> nadd(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(activate(X1), activate(X2))
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(X) -> X
We number the DPs as follows:
- ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X2)
- ACTIVATE(nadd(X1, X2)) -> ACTIVATE(X1)
- ACTIVATE(nfib1(X1, X2)) -> ACTIVATE(X2)
- ACTIVATE(nfib1(X1, X2)) -> ACTIVATE(X1)
and get the following Size-Change Graph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
nfib1(x1, x2) -> nfib1(x1, x2)
nadd(x1, x2) -> nadd(x1, x2)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
Dependency Pair:
SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
Rules:
fib(N) -> sel(N, fib1(s(0), s(0)))
fib1(X, Y) -> cons(X, nfib1(Y, nadd(X, Y)))
fib1(X1, X2) -> nfib1(X1, X2)
add(0, X) -> X
add(s(X), Y) -> s(add(X, Y))
add(X1, X2) -> nadd(X1, X2)
sel(0, cons(X, XS)) -> X
sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
activate(nfib1(X1, X2)) -> fib1(activate(X1), activate(X2))
activate(nadd(X1, X2)) -> add(activate(X1), activate(X2))
activate(X) -> X
We number the DPs as follows:
- SEL(s(N), cons(X, XS)) -> SEL(N, activate(XS))
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
cons(x1, x2) -> cons(x1, x2)
s(x1) -> s(x1)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:00 minutes