Term Rewriting System R:
[X, Y, Z, X1]
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
2ND(cons(X, X1)) -> 2ND(cons1(X, activate(X1)))
2ND(cons(X, X1)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
Dependency Pairs:
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
Rules:
2nd(cons1(X, cons(Y, Z))) -> Y
2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1)))
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
s(X) -> ns(X)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
We number the DPs as follows:
- ACTIVATE(ns(X)) -> ACTIVATE(X)
- ACTIVATE(nfrom(X)) -> ACTIVATE(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
nfrom(x1) -> nfrom(x1)
ns(x1) -> ns(x1)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:00 minutes