Term Rewriting System R:
[X, Y, X1, X2, X3]
active(f(X)) -> mark(if(X, c, f(true)))
active(if(true, X, Y)) -> mark(X)
active(if(false, X, Y)) -> mark(Y)
active(f(X)) -> f(active(X))
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Termination of R to be shown.
R
↳Removing Redundant Rules
Removing the following rules from R which fullfill a polynomial ordering:
active(if(false, X, Y)) -> mark(Y)
where the Polynomial interpretation:
POL(top(x1)) | = x1 |
POL(active(x1)) | = x1 |
POL(proper(x1)) | = x1 |
POL(if(x1, x2, x3)) | = x1 + x2 + x3 |
POL(c) | = 0 |
POL(false) | = 1 |
POL(true) | = 0 |
POL(mark(x1)) | = x1 |
POL(ok(x1)) | = x1 |
POL(f(x1)) | = x1 |
was used.
Not all Rules of R can be deleted, so we still have to regard a part of R.
R
↳RRRPolo
→TRS2
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVE(if(X1, X2, X3)) -> IF(active(X1), X2, X3)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
ACTIVE(if(X1, X2, X3)) -> IF(X1, active(X2), X3)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X2)
ACTIVE(f(X)) -> IF(X, c, f(true))
ACTIVE(f(X)) -> F(true)
ACTIVE(f(X)) -> F(active(X))
ACTIVE(f(X)) -> ACTIVE(X)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
IF(X1, mark(X2), X3) -> IF(X1, X2, X3)
F(mark(X)) -> F(X)
F(ok(X)) -> F(X)
PROPER(f(X)) -> F(proper(X))
PROPER(f(X)) -> PROPER(X)
PROPER(if(X1, X2, X3)) -> IF(proper(X1), proper(X2), proper(X3))
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X3)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
Furthermore, R contains five SCCs.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳MRR
Dependency Pairs:
IF(X1, mark(X2), X3) -> IF(X1, X2, X3)
IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
Rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- IF(X1, mark(X2), X3) -> IF(X1, X2, X3)
- IF(ok(X1), ok(X2), ok(X3)) -> IF(X1, X2, X3)
- IF(mark(X1), X2, X3) -> IF(X1, X2, X3)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
3 | = | 3 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
3 | > | 3 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
3 | = | 3 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
3 | > | 3 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
3 | = | 3 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
3 | = | 3 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
3 | = | 3 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳MRR
Dependency Pairs:
F(ok(X)) -> F(X)
F(mark(X)) -> F(X)
Rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- F(ok(X)) -> F(X)
- F(mark(X)) -> F(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳MRR
Dependency Pairs:
ACTIVE(f(X)) -> ACTIVE(X)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X2)
ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
Rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- ACTIVE(f(X)) -> ACTIVE(X)
- ACTIVE(if(X1, X2, X3)) -> ACTIVE(X2)
- ACTIVE(if(X1, X2, X3)) -> ACTIVE(X1)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
if(x1, x2, x3) -> if(x1, x2, x3)
f(x1) -> f(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳MRR
Dependency Pairs:
PROPER(if(X1, X2, X3)) -> PROPER(X3)
PROPER(if(X1, X2, X3)) -> PROPER(X2)
PROPER(if(X1, X2, X3)) -> PROPER(X1)
PROPER(f(X)) -> PROPER(X)
Rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- PROPER(if(X1, X2, X3)) -> PROPER(X3)
- PROPER(if(X1, X2, X3)) -> PROPER(X2)
- PROPER(if(X1, X2, X3)) -> PROPER(X1)
- PROPER(f(X)) -> PROPER(X)
and get the following Size-Change Graph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
if(x1, x2, x3) -> if(x1, x2, x3)
f(x1) -> f(x1)
We obtain no new DP problems.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Modular Removal of Rules
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We have the following set of usable rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(active(x1)) | = x1 |
POL(proper(x1)) | = x1 |
POL(if(x1, x2, x3)) | = x1 + x2 + x3 |
POL(c) | = 0 |
POL(false) | = 0 |
POL(true) | = 0 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = x1 |
POL(ok(x1)) | = x1 |
POL(f(x1)) | = x1 |
We have the following set D of usable symbols: {proper, active, c, if, false, true, mark, TOP, ok, f}
No Dependency Pairs can be deleted.
2 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳MRR
...
→DP Problem 6
↳Negative Polynomial Order
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
The following Dependency Pair can be strictly oriented using the given order.
TOP(mark(X)) -> TOP(proper(X))
Moreover, the following usable rules (regarding the implicit AFS) are oriented.
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
Used ordering:
Polynomial Order with Interpretation:
POL( TOP(x1) ) = x1
POL( mark(x1) ) = x1 + 1
POL( proper(x1) ) = x1
POL( ok(x1) ) = x1
POL( active(x1) ) = x1
POL( if(x1, ..., x3) ) = x1 + x2
POL( f(x1) ) = x1 + 1
POL( c ) = 0
POL( true ) = 1
POL( false ) = 0
This results in one new DP problem.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳MRR
...
→DP Problem 7
↳Modular Removal of Rules
Dependency Pair:
TOP(ok(X)) -> TOP(active(X))
Rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
proper(c) -> ok(c)
proper(true) -> ok(true)
proper(false) -> ok(false)
proper(f(X)) -> f(proper(X))
proper(if(X1, X2, X3)) -> if(proper(X1), proper(X2), proper(X3))
We have the following set of usable rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(active(x1)) | = x1 |
POL(if(x1, x2, x3)) | = x1 + x2 + x3 |
POL(c) | = 0 |
POL(true) | = 0 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(f(x1)) | = x1 |
We have the following set D of usable symbols: {active, c, if, true, mark, TOP, ok, f}
No Dependency Pairs can be deleted.
5 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳RRRPolo
→TRS2
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳MRR
...
→DP Problem 8
↳Modular Removal of Rules
Dependency Pair:
TOP(ok(X)) -> TOP(active(X))
Rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
We have the following set of usable rules:
active(if(X1, X2, X3)) -> if(active(X1), X2, X3)
active(if(X1, X2, X3)) -> if(X1, active(X2), X3)
active(f(X)) -> mark(if(X, c, f(true)))
active(f(X)) -> f(active(X))
active(if(true, X, Y)) -> mark(X)
if(mark(X1), X2, X3) -> mark(if(X1, X2, X3))
if(ok(X1), ok(X2), ok(X3)) -> ok(if(X1, X2, X3))
if(X1, mark(X2), X3) -> mark(if(X1, X2, X3))
f(mark(X)) -> mark(f(X))
f(ok(X)) -> ok(f(X))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(active(x1)) | = x1 |
POL(if(x1, x2, x3)) | = x1 + x2 + x3 |
POL(c) | = 0 |
POL(true) | = 0 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = 1 + x1 |
POL(f(x1)) | = x1 |
We have the following set D of usable symbols: {active, c, if, true, mark, TOP, ok, f}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
TOP(ok(X)) -> TOP(active(X))
No Rules can be deleted.
After the removal, there are no SCCs in the dependency graph which results in no DP problems which have to be solved.
Termination of R successfully shown.
Duration:
0:02 minutes