Term Rewriting System R:
[X, Y, Z, X1, X2]
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVE(dbl(s(X))) -> S(s(dbl(X)))
ACTIVE(dbl(s(X))) -> S(dbl(X))
ACTIVE(dbl(s(X))) -> DBL(X)
ACTIVE(dbls(cons(X, Y))) -> CONS(dbl(X), dbls(Y))
ACTIVE(dbls(cons(X, Y))) -> DBL(X)
ACTIVE(dbls(cons(X, Y))) -> DBLS(Y)
ACTIVE(sel(s(X), cons(Y, Z))) -> SEL(X, Z)
ACTIVE(indx(cons(X, Y), Z)) -> CONS(sel(X, Z), indx(Y, Z))
ACTIVE(indx(cons(X, Y), Z)) -> SEL(X, Z)
ACTIVE(indx(cons(X, Y), Z)) -> INDX(Y, Z)
ACTIVE(from(X)) -> CONS(X, from(s(X)))
ACTIVE(from(X)) -> FROM(s(X))
ACTIVE(from(X)) -> S(X)
ACTIVE(dbl1(s(X))) -> S1(s1(dbl1(X)))
ACTIVE(dbl1(s(X))) -> S1(dbl1(X))
ACTIVE(dbl1(s(X))) -> DBL1(X)
ACTIVE(sel1(s(X), cons(Y, Z))) -> SEL1(X, Z)
ACTIVE(quote(s(X))) -> S1(quote(X))
ACTIVE(quote(s(X))) -> QUOTE(X)
ACTIVE(quote(dbl(X))) -> DBL1(X)
ACTIVE(quote(sel(X, Y))) -> SEL1(X, Y)
ACTIVE(dbl(X)) -> DBL(active(X))
ACTIVE(dbl(X)) -> ACTIVE(X)
ACTIVE(dbls(X)) -> DBLS(active(X))
ACTIVE(dbls(X)) -> ACTIVE(X)
ACTIVE(sel(X1, X2)) -> SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(indx(X1, X2)) -> INDX(active(X1), X2)
ACTIVE(indx(X1, X2)) -> ACTIVE(X1)
ACTIVE(dbl1(X)) -> DBL1(active(X))
ACTIVE(dbl1(X)) -> ACTIVE(X)
ACTIVE(s1(X)) -> S1(active(X))
ACTIVE(s1(X)) -> ACTIVE(X)
ACTIVE(sel1(X1, X2)) -> SEL1(active(X1), X2)
ACTIVE(sel1(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel1(X1, X2)) -> SEL1(X1, active(X2))
ACTIVE(sel1(X1, X2)) -> ACTIVE(X2)
ACTIVE(quote(X)) -> QUOTE(active(X))
ACTIVE(quote(X)) -> ACTIVE(X)
DBL(mark(X)) -> DBL(X)
DBL(ok(X)) -> DBL(X)
DBLS(mark(X)) -> DBLS(X)
DBLS(ok(X)) -> DBLS(X)
SEL(mark(X1), X2) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
INDX(mark(X1), X2) -> INDX(X1, X2)
INDX(ok(X1), ok(X2)) -> INDX(X1, X2)
DBL1(mark(X)) -> DBL1(X)
DBL1(ok(X)) -> DBL1(X)
S1(mark(X)) -> S1(X)
S1(ok(X)) -> S1(X)
SEL1(mark(X1), X2) -> SEL1(X1, X2)
SEL1(X1, mark(X2)) -> SEL1(X1, X2)
SEL1(ok(X1), ok(X2)) -> SEL1(X1, X2)
QUOTE(mark(X)) -> QUOTE(X)
QUOTE(ok(X)) -> QUOTE(X)
PROPER(dbl(X)) -> DBL(proper(X))
PROPER(dbl(X)) -> PROPER(X)
PROPER(s(X)) -> S(proper(X))
PROPER(s(X)) -> PROPER(X)
PROPER(dbls(X)) -> DBLS(proper(X))
PROPER(dbls(X)) -> PROPER(X)
PROPER(cons(X1, X2)) -> CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(indx(X1, X2)) -> INDX(proper(X1), proper(X2))
PROPER(indx(X1, X2)) -> PROPER(X1)
PROPER(indx(X1, X2)) -> PROPER(X2)
PROPER(from(X)) -> FROM(proper(X))
PROPER(from(X)) -> PROPER(X)
PROPER(dbl1(X)) -> DBL1(proper(X))
PROPER(dbl1(X)) -> PROPER(X)
PROPER(s1(X)) -> S1(proper(X))
PROPER(s1(X)) -> PROPER(X)
PROPER(sel1(X1, X2)) -> SEL1(proper(X1), proper(X2))
PROPER(sel1(X1, X2)) -> PROPER(X1)
PROPER(sel1(X1, X2)) -> PROPER(X2)
PROPER(quote(X)) -> QUOTE(proper(X))
PROPER(quote(X)) -> PROPER(X)
S(ok(X)) -> S(X)
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
FROM(ok(X)) -> FROM(X)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
Furthermore, R contains 14 SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pair:
S(ok(X)) -> S(X)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- S(ok(X)) -> S(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pairs:
DBL(ok(X)) -> DBL(X)
DBL(mark(X)) -> DBL(X)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- DBL(ok(X)) -> DBL(X)
- DBL(mark(X)) -> DBL(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pair:
CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- CONS(ok(X1), ok(X2)) -> CONS(X1, X2)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pairs:
DBLS(ok(X)) -> DBLS(X)
DBLS(mark(X)) -> DBLS(X)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- DBLS(ok(X)) -> DBLS(X)
- DBLS(mark(X)) -> DBLS(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Size-Change Principle
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pairs:
SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
SEL(X1, mark(X2)) -> SEL(X1, X2)
SEL(mark(X1), X2) -> SEL(X1, X2)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- SEL(ok(X1), ok(X2)) -> SEL(X1, X2)
- SEL(X1, mark(X2)) -> SEL(X1, X2)
- SEL(mark(X1), X2) -> SEL(X1, X2)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳Size-Change Principle
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pairs:
INDX(ok(X1), ok(X2)) -> INDX(X1, X2)
INDX(mark(X1), X2) -> INDX(X1, X2)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- INDX(ok(X1), ok(X2)) -> INDX(X1, X2)
- INDX(mark(X1), X2) -> INDX(X1, X2)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳Size-Change Principle
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pair:
FROM(ok(X)) -> FROM(X)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- FROM(ok(X)) -> FROM(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳Size-Change Principle
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pairs:
S1(ok(X)) -> S1(X)
S1(mark(X)) -> S1(X)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- S1(ok(X)) -> S1(X)
- S1(mark(X)) -> S1(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳Size-Change Principle
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pairs:
DBL1(ok(X)) -> DBL1(X)
DBL1(mark(X)) -> DBL1(X)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- DBL1(ok(X)) -> DBL1(X)
- DBL1(mark(X)) -> DBL1(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳Size-Change Principle
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pairs:
SEL1(ok(X1), ok(X2)) -> SEL1(X1, X2)
SEL1(X1, mark(X2)) -> SEL1(X1, X2)
SEL1(mark(X1), X2) -> SEL1(X1, X2)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- SEL1(ok(X1), ok(X2)) -> SEL1(X1, X2)
- SEL1(X1, mark(X2)) -> SEL1(X1, X2)
- SEL1(mark(X1), X2) -> SEL1(X1, X2)
and get the following Size-Change Graph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
which lead(s) to this/these maximal multigraph(s): {3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | > | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | > | 1 |
2 | = | 2 |
|
{3, 2, 1} | , | {3, 2, 1} |
---|
1 | = | 1 |
2 | > | 2 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳Size-Change Principle
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pairs:
QUOTE(ok(X)) -> QUOTE(X)
QUOTE(mark(X)) -> QUOTE(X)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- QUOTE(ok(X)) -> QUOTE(X)
- QUOTE(mark(X)) -> QUOTE(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳Size-Change Principle
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
Dependency Pairs:
ACTIVE(quote(X)) -> ACTIVE(X)
ACTIVE(sel1(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel1(X1, X2)) -> ACTIVE(X1)
ACTIVE(s1(X)) -> ACTIVE(X)
ACTIVE(dbl1(X)) -> ACTIVE(X)
ACTIVE(indx(X1, X2)) -> ACTIVE(X1)
ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
ACTIVE(dbls(X)) -> ACTIVE(X)
ACTIVE(dbl(X)) -> ACTIVE(X)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- ACTIVE(quote(X)) -> ACTIVE(X)
- ACTIVE(sel1(X1, X2)) -> ACTIVE(X2)
- ACTIVE(sel1(X1, X2)) -> ACTIVE(X1)
- ACTIVE(s1(X)) -> ACTIVE(X)
- ACTIVE(dbl1(X)) -> ACTIVE(X)
- ACTIVE(indx(X1, X2)) -> ACTIVE(X1)
- ACTIVE(sel(X1, X2)) -> ACTIVE(X2)
- ACTIVE(sel(X1, X2)) -> ACTIVE(X1)
- ACTIVE(dbls(X)) -> ACTIVE(X)
- ACTIVE(dbl(X)) -> ACTIVE(X)
and get the following Size-Change Graph(s): {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s1(x1) -> s1(x1)
dbls(x1) -> dbls(x1)
indx(x1, x2) -> indx(x1, x2)
quote(x1) -> quote(x1)
dbl(x1) -> dbl(x1)
sel(x1, x2) -> sel(x1, x2)
sel1(x1, x2) -> sel1(x1, x2)
dbl1(x1) -> dbl1(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳Size-Change Principle
→DP Problem 14
↳Nar
Dependency Pairs:
PROPER(quote(X)) -> PROPER(X)
PROPER(sel1(X1, X2)) -> PROPER(X2)
PROPER(sel1(X1, X2)) -> PROPER(X1)
PROPER(s1(X)) -> PROPER(X)
PROPER(dbl1(X)) -> PROPER(X)
PROPER(from(X)) -> PROPER(X)
PROPER(indx(X1, X2)) -> PROPER(X2)
PROPER(indx(X1, X2)) -> PROPER(X1)
PROPER(sel(X1, X2)) -> PROPER(X2)
PROPER(sel(X1, X2)) -> PROPER(X1)
PROPER(cons(X1, X2)) -> PROPER(X2)
PROPER(cons(X1, X2)) -> PROPER(X1)
PROPER(dbls(X)) -> PROPER(X)
PROPER(s(X)) -> PROPER(X)
PROPER(dbl(X)) -> PROPER(X)
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- PROPER(quote(X)) -> PROPER(X)
- PROPER(sel1(X1, X2)) -> PROPER(X2)
- PROPER(sel1(X1, X2)) -> PROPER(X1)
- PROPER(s1(X)) -> PROPER(X)
- PROPER(dbl1(X)) -> PROPER(X)
- PROPER(from(X)) -> PROPER(X)
- PROPER(indx(X1, X2)) -> PROPER(X2)
- PROPER(indx(X1, X2)) -> PROPER(X1)
- PROPER(sel(X1, X2)) -> PROPER(X2)
- PROPER(sel(X1, X2)) -> PROPER(X1)
- PROPER(cons(X1, X2)) -> PROPER(X2)
- PROPER(cons(X1, X2)) -> PROPER(X1)
- PROPER(dbls(X)) -> PROPER(X)
- PROPER(s(X)) -> PROPER(X)
- PROPER(dbl(X)) -> PROPER(X)
and get the following Size-Change Graph(s): {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} | , | {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
from(x1) -> from(x1)
s1(x1) -> s1(x1)
dbls(x1) -> dbls(x1)
indx(x1, x2) -> indx(x1, x2)
quote(x1) -> quote(x1)
cons(x1, x2) -> cons(x1, x2)
dbl(x1) -> dbl(x1)
sel(x1, x2) -> sel(x1, x2)
s(x1) -> s(x1)
sel1(x1, x2) -> sel1(x1, x2)
dbl1(x1) -> dbl1(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Narrowing Transformation
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule
TOP(mark(X)) -> TOP(proper(X))
14 new Dependency Pairs
are created:
TOP(mark(dbl(X''))) -> TOP(dbl(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(dbls(X''))) -> TOP(dbls(proper(X'')))
TOP(mark(nil)) -> TOP(ok(nil))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))
TOP(mark(indx(X1', X2'))) -> TOP(indx(proper(X1'), proper(X2')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(mark(dbl1(X''))) -> TOP(dbl1(proper(X'')))
TOP(mark(01)) -> TOP(ok(01))
TOP(mark(s1(X''))) -> TOP(s1(proper(X'')))
TOP(mark(sel1(X1', X2'))) -> TOP(sel1(proper(X1'), proper(X2')))
TOP(mark(quote(X''))) -> TOP(quote(proper(X'')))
The transformation is resulting in one new DP problem:
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
→DP Problem 15
↳Narrowing Transformation
Dependency Pairs:
TOP(mark(quote(X''))) -> TOP(quote(proper(X'')))
TOP(mark(sel1(X1', X2'))) -> TOP(sel1(proper(X1'), proper(X2')))
TOP(mark(s1(X''))) -> TOP(s1(proper(X'')))
TOP(mark(01)) -> TOP(ok(01))
TOP(mark(dbl1(X''))) -> TOP(dbl1(proper(X'')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(mark(indx(X1', X2'))) -> TOP(indx(proper(X1'), proper(X2')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(nil)) -> TOP(ok(nil))
TOP(mark(dbls(X''))) -> TOP(dbls(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(0)) -> TOP(ok(0))
TOP(mark(dbl(X''))) -> TOP(dbl(proper(X'')))
TOP(ok(X)) -> TOP(active(X))
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule
TOP(ok(X)) -> TOP(active(X))
27 new Dependency Pairs
are created:
TOP(ok(dbl(0))) -> TOP(mark(0))
TOP(ok(dbl(s(X'')))) -> TOP(mark(s(s(dbl(X'')))))
TOP(ok(dbls(nil))) -> TOP(mark(nil))
TOP(ok(dbls(cons(X'', Y')))) -> TOP(mark(cons(dbl(X''), dbls(Y'))))
TOP(ok(sel(0, cons(X'', Y')))) -> TOP(mark(X''))
TOP(ok(sel(s(X''), cons(Y', Z')))) -> TOP(mark(sel(X'', Z')))
TOP(ok(indx(nil, X''))) -> TOP(mark(nil))
TOP(ok(indx(cons(X'', Y'), Z'))) -> TOP(mark(cons(sel(X'', Z'), indx(Y', Z'))))
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
TOP(ok(dbl1(0))) -> TOP(mark(01))
TOP(ok(dbl1(s(X'')))) -> TOP(mark(s1(s1(dbl1(X'')))))
TOP(ok(sel1(0, cons(X'', Y')))) -> TOP(mark(X''))
TOP(ok(sel1(s(X''), cons(Y', Z')))) -> TOP(mark(sel1(X'', Z')))
TOP(ok(quote(0))) -> TOP(mark(01))
TOP(ok(quote(s(X'')))) -> TOP(mark(s1(quote(X''))))
TOP(ok(quote(dbl(X'')))) -> TOP(mark(dbl1(X'')))
TOP(ok(quote(sel(X'', Y')))) -> TOP(mark(sel1(X'', Y')))
TOP(ok(dbl(X''))) -> TOP(dbl(active(X'')))
TOP(ok(dbls(X''))) -> TOP(dbls(active(X'')))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(ok(indx(X1', X2'))) -> TOP(indx(active(X1'), X2'))
TOP(ok(dbl1(X''))) -> TOP(dbl1(active(X'')))
TOP(ok(s1(X''))) -> TOP(s1(active(X'')))
TOP(ok(sel1(X1', X2'))) -> TOP(sel1(active(X1'), X2'))
TOP(ok(sel1(X1', X2'))) -> TOP(sel1(X1', active(X2')))
TOP(ok(quote(X''))) -> TOP(quote(active(X'')))
The transformation is resulting in one new DP problem:
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳SCP
→DP Problem 7
↳SCP
→DP Problem 8
↳SCP
→DP Problem 9
↳SCP
→DP Problem 10
↳SCP
→DP Problem 11
↳SCP
→DP Problem 12
↳SCP
→DP Problem 13
↳SCP
→DP Problem 14
↳Nar
→DP Problem 15
↳Nar
...
→DP Problem 16
↳Remaining Obligation(s)
The following remains to be proven:
Dependency Pairs:
TOP(ok(quote(X''))) -> TOP(quote(active(X'')))
TOP(ok(sel1(X1', X2'))) -> TOP(sel1(X1', active(X2')))
TOP(ok(sel1(X1', X2'))) -> TOP(sel1(active(X1'), X2'))
TOP(ok(s1(X''))) -> TOP(s1(active(X'')))
TOP(ok(dbl1(X''))) -> TOP(dbl1(active(X'')))
TOP(ok(indx(X1', X2'))) -> TOP(indx(active(X1'), X2'))
TOP(ok(sel(X1', X2'))) -> TOP(sel(X1', active(X2')))
TOP(ok(sel(X1', X2'))) -> TOP(sel(active(X1'), X2'))
TOP(ok(dbls(X''))) -> TOP(dbls(active(X'')))
TOP(ok(dbl(X''))) -> TOP(dbl(active(X'')))
TOP(ok(quote(sel(X'', Y')))) -> TOP(mark(sel1(X'', Y')))
TOP(ok(quote(dbl(X'')))) -> TOP(mark(dbl1(X'')))
TOP(ok(quote(s(X'')))) -> TOP(mark(s1(quote(X''))))
TOP(ok(sel1(s(X''), cons(Y', Z')))) -> TOP(mark(sel1(X'', Z')))
TOP(ok(sel1(0, cons(X'', Y')))) -> TOP(mark(X''))
TOP(ok(dbl1(s(X'')))) -> TOP(mark(s1(s1(dbl1(X'')))))
TOP(ok(from(X''))) -> TOP(mark(cons(X'', from(s(X'')))))
TOP(ok(indx(cons(X'', Y'), Z'))) -> TOP(mark(cons(sel(X'', Z'), indx(Y', Z'))))
TOP(ok(sel(s(X''), cons(Y', Z')))) -> TOP(mark(sel(X'', Z')))
TOP(ok(sel(0, cons(X'', Y')))) -> TOP(mark(X''))
TOP(ok(dbls(cons(X'', Y')))) -> TOP(mark(cons(dbl(X''), dbls(Y'))))
TOP(ok(dbl(s(X'')))) -> TOP(mark(s(s(dbl(X'')))))
TOP(mark(sel1(X1', X2'))) -> TOP(sel1(proper(X1'), proper(X2')))
TOP(mark(s1(X''))) -> TOP(s1(proper(X'')))
TOP(mark(dbl1(X''))) -> TOP(dbl1(proper(X'')))
TOP(mark(from(X''))) -> TOP(from(proper(X'')))
TOP(mark(indx(X1', X2'))) -> TOP(indx(proper(X1'), proper(X2')))
TOP(mark(sel(X1', X2'))) -> TOP(sel(proper(X1'), proper(X2')))
TOP(mark(cons(X1', X2'))) -> TOP(cons(proper(X1'), proper(X2')))
TOP(mark(dbls(X''))) -> TOP(dbls(proper(X'')))
TOP(mark(s(X''))) -> TOP(s(proper(X'')))
TOP(mark(dbl(X''))) -> TOP(dbl(proper(X'')))
TOP(mark(quote(X''))) -> TOP(quote(proper(X'')))
Rules:
active(dbl(0)) -> mark(0)
active(dbl(s(X))) -> mark(s(s(dbl(X))))
active(dbls(nil)) -> mark(nil)
active(dbls(cons(X, Y))) -> mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) -> mark(X)
active(sel(s(X), cons(Y, Z))) -> mark(sel(X, Z))
active(indx(nil, X)) -> mark(nil)
active(indx(cons(X, Y), Z)) -> mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) -> mark(cons(X, from(s(X))))
active(dbl1(0)) -> mark(01)
active(dbl1(s(X))) -> mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) -> mark(X)
active(sel1(s(X), cons(Y, Z))) -> mark(sel1(X, Z))
active(quote(0)) -> mark(01)
active(quote(s(X))) -> mark(s1(quote(X)))
active(quote(dbl(X))) -> mark(dbl1(X))
active(quote(sel(X, Y))) -> mark(sel1(X, Y))
active(dbl(X)) -> dbl(active(X))
active(dbls(X)) -> dbls(active(X))
active(sel(X1, X2)) -> sel(active(X1), X2)
active(sel(X1, X2)) -> sel(X1, active(X2))
active(indx(X1, X2)) -> indx(active(X1), X2)
active(dbl1(X)) -> dbl1(active(X))
active(s1(X)) -> s1(active(X))
active(sel1(X1, X2)) -> sel1(active(X1), X2)
active(sel1(X1, X2)) -> sel1(X1, active(X2))
active(quote(X)) -> quote(active(X))
dbl(mark(X)) -> mark(dbl(X))
dbl(ok(X)) -> ok(dbl(X))
dbls(mark(X)) -> mark(dbls(X))
dbls(ok(X)) -> ok(dbls(X))
sel(mark(X1), X2) -> mark(sel(X1, X2))
sel(X1, mark(X2)) -> mark(sel(X1, X2))
sel(ok(X1), ok(X2)) -> ok(sel(X1, X2))
indx(mark(X1), X2) -> mark(indx(X1, X2))
indx(ok(X1), ok(X2)) -> ok(indx(X1, X2))
dbl1(mark(X)) -> mark(dbl1(X))
dbl1(ok(X)) -> ok(dbl1(X))
s1(mark(X)) -> mark(s1(X))
s1(ok(X)) -> ok(s1(X))
sel1(mark(X1), X2) -> mark(sel1(X1, X2))
sel1(X1, mark(X2)) -> mark(sel1(X1, X2))
sel1(ok(X1), ok(X2)) -> ok(sel1(X1, X2))
quote(mark(X)) -> mark(quote(X))
quote(ok(X)) -> ok(quote(X))
proper(dbl(X)) -> dbl(proper(X))
proper(0) -> ok(0)
proper(s(X)) -> s(proper(X))
proper(dbls(X)) -> dbls(proper(X))
proper(nil) -> ok(nil)
proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
proper(sel(X1, X2)) -> sel(proper(X1), proper(X2))
proper(indx(X1, X2)) -> indx(proper(X1), proper(X2))
proper(from(X)) -> from(proper(X))
proper(dbl1(X)) -> dbl1(proper(X))
proper(01) -> ok(01)
proper(s1(X)) -> s1(proper(X))
proper(sel1(X1, X2)) -> sel1(proper(X1), proper(X2))
proper(quote(X)) -> quote(proper(X))
s(ok(X)) -> ok(s(X))
cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
from(ok(X)) -> ok(from(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
The Proof could not be continued due to a Timeout.
Termination of R could not be shown.
Duration:
1:00 minutes