Term Rewriting System R:
[X, Y, X1, X2]
active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
active(f(X1, X2)) -> f(active(X1), X2)
active(g(X)) -> g(active(X))
f(mark(X1), X2) -> mark(f(X1, X2))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2)) -> f(proper(X1), proper(X2))
proper(g(X)) -> g(proper(X))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))

Termination of R to be shown.



   R
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

active(f(g(X), Y)) -> mark(f(X, f(g(X), Y)))
f(ok(X1), ok(X2)) -> ok(f(X1, X2))

where the Polynomial interpretation:
  POL(top(x1))=  1 + x1  
  POL(active(x1))=  1 + 2·x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + 2·x1  
  POL(f(x1, x2))=  x1 + x2  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

f(mark(X1), X2) -> mark(f(X1, X2))
top(mark(X)) -> top(proper(X))

where the Polynomial interpretation:
  POL(top(x1))=  x1  
  POL(proper(x1))=  x1  
  POL(active(x1))=  x1  
  POL(g(x1))=  x1  
  POL(mark(x1))=  1 + x1  
  POL(ok(x1))=  x1  
  POL(f(x1, x2))=  2·x1 + x2  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

proper(f(X1, X2)) -> f(proper(X1), proper(X2))

where the Polynomial interpretation:
  POL(top(x1))=  x1  
  POL(proper(x1))=  2·x1  
  POL(active(x1))=  x1  
  POL(g(x1))=  x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(f(x1, x2))=  1 + x1 + x2  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS4
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

active(g(X)) -> g(active(X))
top(ok(X)) -> top(active(X))

where the Polynomial interpretation:
  POL(top(x1))=  x1  
  POL(active(x1))=  2·x1  
  POL(proper(x1))=  x1  
  POL(g(x1))=  1 + 2·x1  
  POL(mark(x1))=  x1  
  POL(ok(x1))=  1 + 2·x1  
  POL(f(x1, x2))=  x1 + x2  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS5
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

g(mark(X)) -> mark(g(X))

where the Polynomial interpretation:
  POL(proper(x1))=  x1  
  POL(active(x1))=  x1  
  POL(g(x1))=  2·x1  
  POL(mark(x1))=  1 + x1  
  POL(ok(x1))=  x1  
  POL(f(x1, x2))=  x1 + x2  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS6
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

proper(g(X)) -> g(proper(X))

where the Polynomial interpretation:
  POL(active(x1))=  x1  
  POL(proper(x1))=  2·x1  
  POL(g(x1))=  1 + x1  
  POL(ok(x1))=  x1  
  POL(f(x1, x2))=  x1 + x2  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS7
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

active(f(X1, X2)) -> f(active(X1), X2)

where the Polynomial interpretation:
  POL(active(x1))=  2·x1  
  POL(g(x1))=  x1  
  POL(ok(x1))=  x1  
  POL(f(x1, x2))=  1 + x1 + x2  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS8
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

g(ok(X)) -> ok(g(X))

where the Polynomial interpretation:
  POL(g(x1))=  2·x1  
  POL(ok(x1))=  1 + x1  
was used.

All Rules of R can be deleted.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS9
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS10
Dependency Pair Analysis



R contains no Dependency Pairs and therefore no SCCs.

Termination of R successfully shown.
Duration:
0:00 minutes