Term Rewriting System R:
[X, Y, X1, X2, X3]
active(f(X, g(X), Y)) -> mark(f(Y, Y, Y))
active(g(b)) -> mark(c)
active(b) -> mark(c)
active(g(X)) -> g(active(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(g(X)) -> g(proper(X))
proper(b) -> ok(b)
proper(c) -> ok(c)
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVE(f(X, g(X), Y)) -> F(Y, Y, Y)
ACTIVE(g(X)) -> G(active(X))
ACTIVE(g(X)) -> ACTIVE(X)
G(mark(X)) -> G(X)
G(ok(X)) -> G(X)
PROPER(f(X1, X2, X3)) -> F(proper(X1), proper(X2), proper(X3))
PROPER(f(X1, X2, X3)) -> PROPER(X1)
PROPER(f(X1, X2, X3)) -> PROPER(X2)
PROPER(f(X1, X2, X3)) -> PROPER(X3)
PROPER(g(X)) -> G(proper(X))
PROPER(g(X)) -> PROPER(X)
F(ok(X1), ok(X2), ok(X3)) -> F(X1, X2, X3)
TOP(mark(X)) -> TOP(proper(X))
TOP(mark(X)) -> PROPER(X)
TOP(ok(X)) -> TOP(active(X))
TOP(ok(X)) -> ACTIVE(X)
Furthermore, R contains five SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Nar
Dependency Pair:
F(ok(X1), ok(X2), ok(X3)) -> F(X1, X2, X3)
Rules:
active(f(X, g(X), Y)) -> mark(f(Y, Y, Y))
active(g(b)) -> mark(c)
active(b) -> mark(c)
active(g(X)) -> g(active(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(g(X)) -> g(proper(X))
proper(b) -> ok(b)
proper(c) -> ok(c)
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- F(ok(X1), ok(X2), ok(X3)) -> F(X1, X2, X3)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Nar
Dependency Pairs:
G(ok(X)) -> G(X)
G(mark(X)) -> G(X)
Rules:
active(f(X, g(X), Y)) -> mark(f(Y, Y, Y))
active(g(b)) -> mark(c)
active(b) -> mark(c)
active(g(X)) -> g(active(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(g(X)) -> g(proper(X))
proper(b) -> ok(b)
proper(c) -> ok(c)
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- G(ok(X)) -> G(X)
- G(mark(X)) -> G(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳Nar
Dependency Pair:
ACTIVE(g(X)) -> ACTIVE(X)
Rules:
active(f(X, g(X), Y)) -> mark(f(Y, Y, Y))
active(g(b)) -> mark(c)
active(b) -> mark(c)
active(g(X)) -> g(active(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(g(X)) -> g(proper(X))
proper(b) -> ok(b)
proper(c) -> ok(c)
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- ACTIVE(g(X)) -> ACTIVE(X)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
g(x1) -> g(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳Nar
Dependency Pairs:
PROPER(g(X)) -> PROPER(X)
PROPER(f(X1, X2, X3)) -> PROPER(X3)
PROPER(f(X1, X2, X3)) -> PROPER(X2)
PROPER(f(X1, X2, X3)) -> PROPER(X1)
Rules:
active(f(X, g(X), Y)) -> mark(f(Y, Y, Y))
active(g(b)) -> mark(c)
active(b) -> mark(c)
active(g(X)) -> g(active(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(g(X)) -> g(proper(X))
proper(b) -> ok(b)
proper(c) -> ok(c)
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
We number the DPs as follows:
- PROPER(g(X)) -> PROPER(X)
- PROPER(f(X1, X2, X3)) -> PROPER(X3)
- PROPER(f(X1, X2, X3)) -> PROPER(X2)
- PROPER(f(X1, X2, X3)) -> PROPER(X1)
and get the following Size-Change Graph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
|
which lead(s) to this/these maximal multigraph(s): {4, 3, 2, 1} | , | {4, 3, 2, 1} |
---|
1 | > | 1 |
|
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
g(x1) -> g(x1)
f(x1, x2, x3) -> f(x1, x2, x3)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Narrowing Transformation
Dependency Pairs:
TOP(ok(X)) -> TOP(active(X))
TOP(mark(X)) -> TOP(proper(X))
Rules:
active(f(X, g(X), Y)) -> mark(f(Y, Y, Y))
active(g(b)) -> mark(c)
active(b) -> mark(c)
active(g(X)) -> g(active(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(g(X)) -> g(proper(X))
proper(b) -> ok(b)
proper(c) -> ok(c)
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule
TOP(mark(X)) -> TOP(proper(X))
four new Dependency Pairs
are created:
TOP(mark(f(X1', X2', X3'))) -> TOP(f(proper(X1'), proper(X2'), proper(X3')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(b)) -> TOP(ok(b))
TOP(mark(c)) -> TOP(ok(c))
The transformation is resulting in one new DP problem:
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Nar
→DP Problem 6
↳Narrowing Transformation
Dependency Pairs:
TOP(mark(c)) -> TOP(ok(c))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
TOP(mark(f(X1', X2', X3'))) -> TOP(f(proper(X1'), proper(X2'), proper(X3')))
TOP(ok(X)) -> TOP(active(X))
Rules:
active(f(X, g(X), Y)) -> mark(f(Y, Y, Y))
active(g(b)) -> mark(c)
active(b) -> mark(c)
active(g(X)) -> g(active(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(g(X)) -> g(proper(X))
proper(b) -> ok(b)
proper(c) -> ok(c)
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
On this DP problem, a Narrowing SCC transformation can be performed.
As a result of transforming the rule
TOP(ok(X)) -> TOP(active(X))
four new Dependency Pairs
are created:
TOP(ok(f(X'', g(X''), Y'))) -> TOP(mark(f(Y', Y', Y')))
TOP(ok(g(b))) -> TOP(mark(c))
TOP(ok(b)) -> TOP(mark(c))
TOP(ok(g(X''))) -> TOP(g(active(X'')))
The transformation is resulting in one new DP problem:
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Nar
→DP Problem 6
↳Nar
...
→DP Problem 7
↳Remaining Obligation(s)
The following remains to be proven:
Dependency Pairs:
TOP(ok(g(X''))) -> TOP(g(active(X'')))
TOP(ok(f(X'', g(X''), Y'))) -> TOP(mark(f(Y', Y', Y')))
TOP(mark(f(X1', X2', X3'))) -> TOP(f(proper(X1'), proper(X2'), proper(X3')))
TOP(mark(g(X''))) -> TOP(g(proper(X'')))
Rules:
active(f(X, g(X), Y)) -> mark(f(Y, Y, Y))
active(g(b)) -> mark(c)
active(b) -> mark(c)
active(g(X)) -> g(active(X))
g(mark(X)) -> mark(g(X))
g(ok(X)) -> ok(g(X))
proper(f(X1, X2, X3)) -> f(proper(X1), proper(X2), proper(X3))
proper(g(X)) -> g(proper(X))
proper(b) -> ok(b)
proper(c) -> ok(c)
f(ok(X1), ok(X2), ok(X3)) -> ok(f(X1, X2, X3))
top(mark(X)) -> top(proper(X))
top(ok(X)) -> top(active(X))
The Proof could not be continued due to a Timeout.
Termination of R could not be shown.
Duration:
1:00 minutes