Term Rewriting System R:
[X, Y, X1, X2]
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

LEQ(s(X), s(Y)) -> LEQ(X, Y)
IF(true, X, Y) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
DIFF(X, Y) -> LEQ(X, Y)
ACTIVATE(n0) -> 0'
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(np(X)) -> P(activate(X))
ACTIVATE(np(X)) -> ACTIVATE(X)

Furthermore, R contains two SCCs.


   R
DPs
       →DP Problem 1
Size-Change Principle
       →DP Problem 2
Neg POLO


Dependency Pair:

LEQ(s(X), s(Y)) -> LEQ(X, Y)


Rules:


p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X





We number the DPs as follows:
  1. LEQ(s(X), s(Y)) -> LEQ(X, Y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
SCP
       →DP Problem 2
Negative Polynomial Order


Dependency Pairs:

ACTIVATE(np(X)) -> ACTIVATE(X)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X1)
IF(false, X, Y) -> ACTIVATE(Y)
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(true, X, Y) -> ACTIVATE(X)


Rules:


p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X





The following Dependency Pairs can be strictly oriented using the given order.

ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X2)
ACTIVATE(ndiff(X1, X2)) -> ACTIVATE(X1)


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
0 -> n0
s(X) -> ns(X)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)


Used ordering:
Polynomial Order with Interpretation:

POL( ACTIVATE(x1) ) = x1

POL( ndiff(x1, x2) ) = x1 + x2 + 1

POL( np(x1) ) = x1

POL( DIFF(x1, x2) ) = x1 + x2 + 1

POL( activate(x1) ) = x1

POL( ns(x1) ) = x1

POL( IF(x1, ..., x3) ) = x2 + x3

POL( n0 ) = 0

POL( leq(x1, x2) ) = 0

POL( true ) = 0

POL( false ) = 0

POL( 0 ) = 0

POL( s(x1) ) = x1

POL( diff(x1, x2) ) = x1 + x2 + 1

POL( p(x1) ) = x1

POL( if(x1, ..., x3) ) = x2 + x3


This results in one new DP problem.


   R
DPs
       →DP Problem 1
SCP
       →DP Problem 2
Neg POLO
           →DP Problem 3
Negative Polynomial Order


Dependency Pairs:

ACTIVATE(np(X)) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(true, X, Y) -> ACTIVATE(X)


Rules:


p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X





The following Dependency Pair can be strictly oriented using the given order.

ACTIVATE(np(X)) -> ACTIVATE(X)


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X
0 -> n0
s(X) -> ns(X)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)


Used ordering:
Polynomial Order with Interpretation:

POL( ACTIVATE(x1) ) = x1

POL( np(x1) ) = x1 + 1

POL( IF(x1, ..., x3) ) = x2 + x3

POL( DIFF(x1, x2) ) = 0

POL( n0 ) = 0

POL( ns(x1) ) = x1

POL( ndiff(x1, x2) ) = 0

POL( leq(x1, x2) ) = 0

POL( true ) = 0

POL( false ) = 0

POL( activate(x1) ) = x1

POL( 0 ) = 0

POL( s(x1) ) = x1

POL( diff(x1, x2) ) = 0

POL( p(x1) ) = x1 + 1

POL( if(x1, ..., x3) ) = x2 + x3


This results in one new DP problem.


   R
DPs
       →DP Problem 1
SCP
       →DP Problem 2
Neg POLO
           →DP Problem 3
Neg POLO
             ...
               →DP Problem 4
Instantiation Transformation


Dependency Pairs:

IF(false, X, Y) -> ACTIVATE(Y)
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(true, X, Y) -> ACTIVATE(X)


Rules:


p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IF(true, X, Y) -> ACTIVATE(X)
one new Dependency Pair is created:

IF(true, n0, ns(ndiff(np(X''), Y''))) -> ACTIVATE(n0)

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
SCP
       →DP Problem 2
Neg POLO
           →DP Problem 3
Neg POLO
             ...
               →DP Problem 5
Instantiation Transformation


Dependency Pairs:

DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))
ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(false, X, Y) -> ACTIVATE(Y)


Rules:


p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X





On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule

IF(false, X, Y) -> ACTIVATE(Y)
one new Dependency Pair is created:

IF(false, n0, ns(ndiff(np(X''), Y''))) -> ACTIVATE(ns(ndiff(np(X''), Y'')))

The transformation is resulting in one new DP problem:



   R
DPs
       →DP Problem 1
SCP
       →DP Problem 2
Neg POLO
           →DP Problem 3
Neg POLO
             ...
               →DP Problem 6
Remaining Obligation(s)




The following remains to be proven:
Dependency Pairs:

ACTIVATE(ndiff(X1, X2)) -> DIFF(activate(X1), activate(X2))
ACTIVATE(ns(X)) -> ACTIVATE(X)
IF(false, n0, ns(ndiff(np(X''), Y''))) -> ACTIVATE(ns(ndiff(np(X''), Y'')))
DIFF(X, Y) -> IF(leq(X, Y), n0, ns(ndiff(np(X), Y)))


Rules:


p(0) -> 0
p(s(X)) -> X
p(X) -> np(X)
leq(0, Y) -> true
leq(s(X), 0) -> false
leq(s(X), s(Y)) -> leq(X, Y)
if(true, X, Y) -> activate(X)
if(false, X, Y) -> activate(Y)
diff(X, Y) -> if(leq(X, Y), n0, ns(ndiff(np(X), Y)))
diff(X1, X2) -> ndiff(X1, X2)
0 -> n0
s(X) -> ns(X)
activate(n0) -> 0
activate(ns(X)) -> s(activate(X))
activate(ndiff(X1, X2)) -> diff(activate(X1), activate(X2))
activate(np(X)) -> p(activate(X))
activate(X) -> X




The Proof could not be continued due to a Timeout.
Termination of R could not be shown.
Duration:
1:00 minutes