Term Rewriting System R:
[X, Y, Z, X1, X2]
2nd(cons(X, ncons(Y, Z))) -> activate(Y)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
cons(X1, X2) -> ncons(X1, X2)
s(X) -> ns(X)
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
2ND(cons(X, ncons(Y, Z))) -> ACTIVATE(Y)
FROM(X) -> CONS(X, nfrom(ns(X)))
ACTIVATE(ncons(X1, X2)) -> CONS(activate(X1), X2)
ACTIVATE(ncons(X1, X2)) -> ACTIVATE(X1)
ACTIVATE(nfrom(X)) -> FROM(activate(X))
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ns(X)) -> S(activate(X))
ACTIVATE(ns(X)) -> ACTIVATE(X)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
Dependency Pairs:
ACTIVATE(ns(X)) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> ACTIVATE(X)
ACTIVATE(ncons(X1, X2)) -> ACTIVATE(X1)
Rules:
2nd(cons(X, ncons(Y, Z))) -> activate(Y)
from(X) -> cons(X, nfrom(ns(X)))
from(X) -> nfrom(X)
cons(X1, X2) -> ncons(X1, X2)
s(X) -> ns(X)
activate(ncons(X1, X2)) -> cons(activate(X1), X2)
activate(nfrom(X)) -> from(activate(X))
activate(ns(X)) -> s(activate(X))
activate(X) -> X
We number the DPs as follows:
- ACTIVATE(ns(X)) -> ACTIVATE(X)
- ACTIVATE(nfrom(X)) -> ACTIVATE(X)
- ACTIVATE(ncons(X1, X2)) -> ACTIVATE(X1)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
ncons(x1, x2) -> ncons(x1, x2)
nfrom(x1) -> nfrom(x1)
ns(x1) -> ns(x1)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:00 minutes