Term Rewriting System R:
[X, Y, X1, X2]
from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

FROM(X) -> CONS(X, nfrom(s(X)))
LENGTH(ncons(X, Y)) -> LENGTH1(activate(Y))
LENGTH(ncons(X, Y)) -> ACTIVATE(Y)
LENGTH1(X) -> LENGTH(activate(X))
LENGTH1(X) -> ACTIVATE(X)
ACTIVATE(nfrom(X)) -> FROM(X)
ACTIVATE(nnil) -> NIL
ACTIVATE(ncons(X1, X2)) -> CONS(X1, X2)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Non Termination


Dependency Pairs:

LENGTH1(X) -> LENGTH(activate(X))
LENGTH(ncons(X, Y)) -> LENGTH1(activate(Y))


Rules:


from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X





Found an infinite P-chain over R:
P =

LENGTH1(X) -> LENGTH(activate(X))
LENGTH(ncons(X, Y)) -> LENGTH1(activate(Y))

R =

from(X) -> cons(X, nfrom(s(X)))
from(X) -> nfrom(X)
length(nnil) -> 0
length(ncons(X, Y)) -> s(length1(activate(Y)))
length1(X) -> length(activate(X))
nil -> nnil
cons(X1, X2) -> ncons(X1, X2)
activate(nfrom(X)) -> from(X)
activate(nnil) -> nil
activate(ncons(X1, X2)) -> cons(X1, X2)
activate(X) -> X

s = LENGTH(activate(activate(nfrom(X'''''))))
evaluates to t =LENGTH(activate(activate(nfrom(s(X''''')))))

Thus, s starts an infinite chain as s matches t.

Non-Termination of R could be shown.
Duration:
0:00 minutes