Term Rewriting System R:
[x, y, z, u, v]
if(true, x, y) -> x
if(false, x, y) -> y
if(x, y, y) -> y
if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) -> if(x, y, z)
if(x, y, if(x, y, z)) -> if(x, y, z)

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

IF(if(x, y, z), u, v) -> IF(x, if(y, u, v), if(z, u, v))
IF(if(x, y, z), u, v) -> IF(y, u, v)
IF(if(x, y, z), u, v) -> IF(z, u, v)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Size-Change Principle


Dependency Pairs:

IF(if(x, y, z), u, v) -> IF(z, u, v)
IF(if(x, y, z), u, v) -> IF(y, u, v)
IF(if(x, y, z), u, v) -> IF(x, if(y, u, v), if(z, u, v))


Rules:


if(true, x, y) -> x
if(false, x, y) -> y
if(x, y, y) -> y
if(if(x, y, z), u, v) -> if(x, if(y, u, v), if(z, u, v))
if(x, if(x, y, z), z) -> if(x, y, z)
if(x, y, if(x, y, z)) -> if(x, y, z)





We number the DPs as follows:
  1. IF(if(x, y, z), u, v) -> IF(z, u, v)
  2. IF(if(x, y, z), u, v) -> IF(y, u, v)
  3. IF(if(x, y, z), u, v) -> IF(x, if(y, u, v), if(z, u, v))
and get the following Size-Change Graph(s):
{3, 2, 1} , {3, 2, 1}
1>1
2=2
3=3
{3, 2, 1} , {3, 2, 1}
1>1

which lead(s) to this/these maximal multigraph(s):
{3, 2, 1} , {3, 2, 1}
1>1
{3, 2, 1} , {3, 2, 1}
1>1
2=2
3=3

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial


We obtain no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes