Term Rewriting System R:
[x, y, z]
*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
*'(x, *(y, z)) -> *'(otimes(x, y), z)
*'(+(x, y), z) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)
*'(x, oplus(y, z)) -> *'(x, y)
*'(x, oplus(y, z)) -> *'(x, z)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
Dependency Pairs:
*'(x, oplus(y, z)) -> *'(x, z)
*'(+(x, y), z) -> *'(y, z)
*'(+(x, y), z) -> *'(x, z)
*'(x, oplus(y, z)) -> *'(x, y)
*'(x, *(y, z)) -> *'(otimes(x, y), z)
Rules:
*(x, *(y, z)) -> *(otimes(x, y), z)
*(1, y) -> y
*(+(x, y), z) -> oplus(*(x, z), *(y, z))
*(x, oplus(y, z)) -> oplus(*(x, y), *(x, z))
We number the DPs as follows:
- *'(x, oplus(y, z)) -> *'(x, z)
- *'(+(x, y), z) -> *'(y, z)
- *'(+(x, y), z) -> *'(x, z)
- *'(x, oplus(y, z)) -> *'(x, y)
- *'(x, *(y, z)) -> *'(otimes(x, y), z)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
otimes(x1, x2) -> otimes(x1, x2)
*(x1, x2) -> *(x1, x2)
oplus(x1, x2) -> oplus(x1, x2)
+(x1, x2) -> +(x1, x2)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:00 minutes