Term Rewriting System R:
[x, y, z, u]
f(j(x, y), y) -> g(f(x, k(y)))
f(x, h1(y, z)) -> h2(0, x, h1(y, z))
g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z
k(h(x)) -> h1(0, x)
k(h1(x, y)) -> h1(s(x), y)

Termination of R to be shown.



   R
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

f(j(x, y), y) -> g(f(x, k(y)))
h2(x, j(y, h1(z, u)), h1(z, u)) -> h2(s(x), y, h1(s(z), u))
i(f(x, h(y))) -> y
i(h2(s(x), y, h1(x, z))) -> z

where the Polynomial interpretation:
  POL(0)=  0  
  POL(i(x1))=  1 + x1  
  POL(g(x1))=  x1  
  POL(h1(x1, x2))=  x1 + x2  
  POL(s(x1))=  x1  
  POL(h(x1))=  x1  
  POL(j(x1, x2))=  1 + x1 + x2  
  POL(f(x1, x2))=  x1 + x2  
  POL(h2(x1, x2, x3))=  x1 + x2 + x3  
  POL(k(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

k(h1(x, y)) -> h1(s(x), y)
k(h(x)) -> h1(0, x)

where the Polynomial interpretation:
  POL(0)=  0  
  POL(g(x1))=  x1  
  POL(h1(x1, x2))=  x1 + x2  
  POL(h(x1))=  x1  
  POL(s(x1))=  x1  
  POL(f(x1, x2))=  x1 + x2  
  POL(h2(x1, x2, x3))=  x1 + x2 + x3  
  POL(k(x1))=  1 + x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

f(x, h1(y, z)) -> h2(0, x, h1(y, z))

where the Polynomial interpretation:
  POL(0)=  0  
  POL(g(x1))=  x1  
  POL(h1(x1, x2))=  x1 + x2  
  POL(s(x1))=  x1  
  POL(h2(x1, x2, x3))=  x1 + x2 + x3  
  POL(f(x1, x2))=  1 + x1 + x2  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS4
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

g(h2(x, y, h1(z, u))) -> h2(s(x), y, h1(z, u))

where the Polynomial interpretation:
  POL(g(x1))=  1 + x1  
  POL(h1(x1, x2))=  x1 + x2  
  POL(s(x1))=  x1  
  POL(h2(x1, x2, x3))=  x1 + x2 + x3  
was used.

All Rules of R can be deleted.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS5
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS6
Dependency Pair Analysis



R contains no Dependency Pairs and therefore no SCCs.

Termination of R successfully shown.
Duration:
0:00 minutes