Term Rewriting System R:
[x, y]
not(x) -> if(x, false, true)
and(x, y) -> if(x, y, false)
or(x, y) -> if(x, true, y)
implies(x, y) -> if(x, y, true)
=(x, x) -> true
=(x, y) -> if(x, y, not(y))
=(x, y) -> if(x, y, if(y, false, true))
if(true, x, y) -> x
if(false, x, y) -> y
if(x, x, if(x, false, true)) -> true

Termination of R to be shown.



   R
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

not(x) -> if(x, false, true)
=(x, x) -> true
=(x, y) -> if(x, y, if(y, false, true))

where the Polynomial interpretation:
  POL(and(x1, x2))=  x1 + x2  
  POL(if(x1, x2, x3))=  x1 + x2 + x3  
  POL(false)=  0  
  POL(=(x1, x2))=  1 + x1 + 2·x2  
  POL(or(x1, x2))=  x1 + x2  
  POL(true)=  0  
  POL(implies(x1, x2))=  x1 + x2  
  POL(not(x1))=  1 + x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

or(x, y) -> if(x, true, y)

where the Polynomial interpretation:
  POL(and(x1, x2))=  x1 + x2  
  POL(if(x1, x2, x3))=  x1 + x2 + x3  
  POL(false)=  0  
  POL(=(x1, x2))=  x1 + 2·x2  
  POL(true)=  0  
  POL(implies(x1, x2))=  x1 + x2  
  POL(or(x1, x2))=  1 + x1 + x2  
  POL(not(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

if(true, x, y) -> x

where the Polynomial interpretation:
  POL(and(x1, x2))=  x1 + x2  
  POL(if(x1, x2, x3))=  x1 + x2 + x3  
  POL(false)=  0  
  POL(=(x1, x2))=  x1 + 2·x2  
  POL(true)=  1  
  POL(implies(x1, x2))=  1 + x1 + x2  
  POL(not(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS4
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

if(false, x, y) -> y
if(x, x, if(x, false, true)) -> true

where the Polynomial interpretation:
  POL(and(x1, x2))=  1 + x1 + x2  
  POL(if(x1, x2, x3))=  x1 + x2 + x3  
  POL(false)=  1  
  POL(=(x1, x2))=  x1 + 2·x2  
  POL(true)=  0  
  POL(implies(x1, x2))=  x1 + x2  
  POL(not(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS5
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

and(x, y) -> if(x, y, false)

where the Polynomial interpretation:
  POL(and(x1, x2))=  1 + x1 + x2  
  POL(if(x1, x2, x3))=  x1 + x2 + x3  
  POL(false)=  0  
  POL(=(x1, x2))=  x1 + 2·x2  
  POL(implies(x1, x2))=  x1 + x2  
  POL(true)=  0  
  POL(not(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS6
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

=(x, y) -> if(x, y, not(y))

where the Polynomial interpretation:
  POL(if(x1, x2, x3))=  x1 + x2 + x3  
  POL(=(x1, x2))=  1 + x1 + 2·x2  
  POL(implies(x1, x2))=  x1 + x2  
  POL(true)=  0  
  POL(not(x1))=  x1  
was used.

Not all Rules of R can be deleted, so we still have to regard a part of R.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS7
Removing Redundant Rules



Removing the following rules from R which fullfill a polynomial ordering:

implies(x, y) -> if(x, y, true)

where the Polynomial interpretation:
  POL(if(x1, x2, x3))=  x1 + x2 + x3  
  POL(implies(x1, x2))=  1 + x1 + x2  
  POL(true)=  0  
was used.

All Rules of R can be deleted.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS8
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
RRRPolo
       →TRS2
RRRPolo
           →TRS3
RRRPolo
             ...
               →TRS9
Dependency Pair Analysis



R contains no Dependency Pairs and therefore no SCCs.

Termination of R successfully shown.
Duration:
0:00 minutes