Term Rewriting System R:
[x, y]
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)
Termination of R to be shown.
R
↳Overlay and local confluence Check
The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.
R
↳OC
→TRS2
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
PRIME(s(s(x))) -> PRIME1(s(s(x)), s(x))
PRIME1(x, s(s(y))) -> DIVP(s(s(y)), x)
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
Furthermore, R contains one SCC.
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pair:
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
Rules:
prime(0) -> false
prime(s(0)) -> false
prime(s(s(x))) -> prime1(s(s(x)), s(x))
prime1(x, 0) -> false
prime1(x, s(0)) -> true
prime1(x, s(s(y))) -> and(not(divp(s(s(y)), x)), prime1(x, s(y)))
divp(x, y) -> =(rem(x, y), 0)
Strategy:
innermost
As we are in the innermost case, we can delete all 7 non-usable-rules.
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
...
→DP Problem 2
↳Size-Change Principle
Dependency Pair:
PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- PRIME1(x, s(s(y))) -> PRIME1(x, s(y))
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:00 minutes