Term Rewriting System R:
[x, y]
fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(0))) -> s(0)
fib(s(s(x))) -> sp(g(x))
g(0) -> pair(s(0), 0)
g(s(0)) -> pair(s(0), s(0))
g(s(x)) -> np(g(x))
sp(pair(x, y)) -> +(x, y)
np(pair(x, y)) -> pair(+(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
FIB(s(s(x))) -> SP(g(x))
FIB(s(s(x))) -> G(x)
G(s(x)) -> NP(g(x))
G(s(x)) -> G(x)
SP(pair(x, y)) -> +'(x, y)
NP(pair(x, y)) -> +'(x, y)
+'(x, s(y)) -> +'(x, y)
Furthermore, R contains two SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
Dependency Pair:
+'(x, s(y)) -> +'(x, y)
Rules:
fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(0))) -> s(0)
fib(s(s(x))) -> sp(g(x))
g(0) -> pair(s(0), 0)
g(s(0)) -> pair(s(0), s(0))
g(s(x)) -> np(g(x))
sp(pair(x, y)) -> +(x, y)
np(pair(x, y)) -> pair(+(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
We number the DPs as follows:
- +'(x, s(y)) -> +'(x, y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
Dependency Pair:
G(s(x)) -> G(x)
Rules:
fib(0) -> 0
fib(s(0)) -> s(0)
fib(s(s(0))) -> s(0)
fib(s(s(x))) -> sp(g(x))
g(0) -> pair(s(0), 0)
g(s(0)) -> pair(s(0), s(0))
g(s(x)) -> np(g(x))
sp(pair(x, y)) -> +(x, y)
np(pair(x, y)) -> pair(+(x, y), x)
+(x, 0) -> x
+(x, s(y)) -> s(+(x, y))
We number the DPs as follows:
- G(s(x)) -> G(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:01 minutes