Term Rewriting System R:
[x]
sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))

Termination of R to be shown.



   R
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
OC
       →TRS2
Dependency Pair Analysis



R contains the following Dependency Pairs:

SUM(s(x)) -> SUM(x)
SUM1(s(x)) -> SUM1(x)

Furthermore, R contains two SCCs.


   R
OC
       →TRS2
DPs
           →DP Problem 1
Usable Rules (Innermost)
           →DP Problem 2
UsableRules


Dependency Pair:

SUM(s(x)) -> SUM(x)


Rules:


sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))


Strategy:

innermost




As we are in the innermost case, we can delete all 4 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
             ...
               →DP Problem 3
Size-Change Principle
           →DP Problem 2
UsableRules


Dependency Pair:

SUM(s(x)) -> SUM(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. SUM(s(x)) -> SUM(x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
Usable Rules (Innermost)


Dependency Pair:

SUM1(s(x)) -> SUM1(x)


Rules:


sum(0) -> 0
sum(s(x)) -> +(sum(x), s(x))
sum1(0) -> 0
sum1(s(x)) -> s(+(sum1(x), +(x, x)))


Strategy:

innermost




As we are in the innermost case, we can delete all 4 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
UsableRules
             ...
               →DP Problem 4
Size-Change Principle


Dependency Pair:

SUM1(s(x)) -> SUM1(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. SUM1(s(x)) -> SUM1(x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes