Term Rewriting System R:
[x, y]
minus(minus(x)) -> x
minus(h(x)) -> h(minus(x))
minus(f(x, y)) -> f(minus(y), minus(x))
Termination of R to be shown.
R
↳Removing Redundant Rules
Removing the following rules from R which fullfill a polynomial ordering:
minus(minus(x)) -> x
where the Polynomial interpretation:
POL(minus(x1)) | = 1 + 2·x1 |
POL(h(x1)) | = x1 |
POL(f(x1, x2)) | = 1 + x1 + x2 |
was used.
Not all Rules of R can be deleted, so we still have to regard a part of R.
R
↳RRRPolo
→TRS2
↳Removing Redundant Rules
Removing the following rules from R which fullfill a polynomial ordering:
minus(f(x, y)) -> f(minus(y), minus(x))
where the Polynomial interpretation:
POL(minus(x1)) | = 2·x1 |
POL(h(x1)) | = x1 |
POL(f(x1, x2)) | = 1 + x1 + x2 |
was used.
Not all Rules of R can be deleted, so we still have to regard a part of R.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳Removing Redundant Rules
Removing the following rules from R which fullfill a polynomial ordering:
minus(h(x)) -> h(minus(x))
where the Polynomial interpretation:
POL(minus(x1)) | = 2·x1 |
POL(h(x1)) | = 1 + x1 |
was used.
All Rules of R can be deleted.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→TRS4
↳Overlay and local confluence Check
The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.
R
↳RRRPolo
→TRS2
↳RRRPolo
→TRS3
↳RRRPolo
...
→TRS5
↳Dependency Pair Analysis
R contains no Dependency Pairs and therefore no SCCs.
Termination of R successfully shown.
Duration:
0:00 minutes