Term Rewriting System R:
[Y, X]
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))

Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

PLUS(s(X), Y) -> PLUS(X, Y)
MIN(s(X), s(Y)) -> MIN(X, Y)
MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
MIN(min(X, Y), Z) -> PLUS(Y, Z)
QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))
QUOT(s(X), s(Y)) -> MIN(X, Y)

Furthermore, R contains three SCCs.


   R
DPs
       →DP Problem 1
Size-Change Principle
       →DP Problem 2
SCP
       →DP Problem 3
Neg POLO


Dependency Pair:

PLUS(s(X), Y) -> PLUS(X, Y)


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))





We number the DPs as follows:
  1. PLUS(s(X), Y) -> PLUS(X, Y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2=2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2=2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
SCP
       →DP Problem 2
Size-Change Principle
       →DP Problem 3
Neg POLO


Dependency Pairs:

MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
MIN(s(X), s(Y)) -> MIN(X, Y)


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))





We number the DPs as follows:
  1. MIN(min(X, Y), Z) -> MIN(X, plus(Y, Z))
  2. MIN(s(X), s(Y)) -> MIN(X, Y)
and get the following Size-Change Graph(s):
{2, 1} , {2, 1}
1>1
{2, 1} , {2, 1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{2, 1} , {2, 1}
1>1
2>2
{2, 1} , {2, 1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
min(x1, x2) -> min(x1, x2)
s(x1) -> s(x1)

We obtain no new DP problems.


   R
DPs
       →DP Problem 1
SCP
       →DP Problem 2
SCP
       →DP Problem 3
Negative Polynomial Order


Dependency Pair:

QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))





The following Dependency Pair can be strictly oriented using the given order.

QUOT(s(X), s(Y)) -> QUOT(min(X, Y), s(Y))


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))


Used ordering:
Polynomial Order with Interpretation:

POL( QUOT(x1, x2) ) = x1

POL( s(x1) ) = x1 + 1

POL( min(x1, x2) ) = x1

POL( plus(x1, x2) ) = x1 + x2


This results in one new DP problem.


   R
DPs
       →DP Problem 1
SCP
       →DP Problem 2
SCP
       →DP Problem 3
Neg POLO
           →DP Problem 4
Dependency Graph


Dependency Pair:


Rules:


plus(0, Y) -> Y
plus(s(X), Y) -> s(plus(X, Y))
min(X, 0) -> X
min(s(X), s(Y)) -> min(X, Y)
min(min(X, Y), Z) -> min(X, plus(Y, Z))
quot(0, s(Y)) -> 0
quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y)))





Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes