Term Rewriting System R:
[X, Z, Y]
h(X, Z) -> f(X, s(X), Z)
f(X, Y, g(X, Y)) -> h(0, g(X, Y))
g(0, Y) -> 0
g(X, s(Y)) -> g(X, Y)
Innermost Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
H(X, Z) -> F(X, s(X), Z)
F(X, Y, g(X, Y)) -> H(0, g(X, Y))
G(X, s(Y)) -> G(X, Y)
Furthermore, R contains one SCC.
R
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
Dependency Pair:
G(X, s(Y)) -> G(X, Y)
Rules:
h(X, Z) -> f(X, s(X), Z)
f(X, Y, g(X, Y)) -> h(0, g(X, Y))
g(0, Y) -> 0
g(X, s(Y)) -> g(X, Y)
Strategy:
innermost
As we are in the innermost case, we can delete all 4 non-usable-rules.
R
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Size-Change Principle
Dependency Pair:
G(X, s(Y)) -> G(X, Y)
Rule:
none
Strategy:
innermost
We number the DPs as follows:
- G(X, s(Y)) -> G(X, Y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
Innermost Termination of R successfully shown.
Duration:
0:00 minutes