R
↳Overlay and local confluence Check
R
↳OC
→TRS2
↳Dependency Pair Analysis
-'(s(x), s(y)) -> -'(x, y)
LT(s(x), s(y)) -> LT(x, y)
DIV(s(x), s(y)) -> IF(lt(x, y), 0, s(div(-(x, y), s(y))))
DIV(s(x), s(y)) -> LT(x, y)
DIV(s(x), s(y)) -> DIV(-(x, y), s(y))
DIV(s(x), s(y)) -> -'(x, y)
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳Usable Rules (Innermost)
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
-'(s(x), s(y)) -> -'(x, y)
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
lt(x, 0) -> false
lt(0, s(y)) -> true
lt(s(x), s(y)) -> lt(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
div(x, 0) -> 0
div(0, y) -> 0
div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y))))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
...
→DP Problem 4
↳Size-Change Principle
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
-'(s(x), s(y)) -> -'(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳Usable Rules (Innermost)
→DP Problem 3
↳UsableRules
LT(s(x), s(y)) -> LT(x, y)
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
lt(x, 0) -> false
lt(0, s(y)) -> true
lt(s(x), s(y)) -> lt(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
div(x, 0) -> 0
div(0, y) -> 0
div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y))))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
...
→DP Problem 5
↳Size-Change Principle
→DP Problem 3
↳UsableRules
LT(s(x), s(y)) -> LT(x, y)
none
innermost
|
|
trivial
s(x1) -> s(x1)
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳Usable Rules (Innermost)
DIV(s(x), s(y)) -> DIV(-(x, y), s(y))
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
lt(x, 0) -> false
lt(0, s(y)) -> true
lt(s(x), s(y)) -> lt(x, y)
if(true, x, y) -> x
if(false, x, y) -> y
div(x, 0) -> 0
div(0, y) -> 0
div(s(x), s(y)) -> if(lt(x, y), 0, s(div(-(x, y), s(y))))
innermost
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
...
→DP Problem 6
↳Negative Polynomial Order
DIV(s(x), s(y)) -> DIV(-(x, y), s(y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
-(0, s(y)) -> 0
innermost
DIV(s(x), s(y)) -> DIV(-(x, y), s(y))
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
-(0, s(y)) -> 0
POL( DIV(x1, x2) ) = x1
POL( s(x1) ) = x1 + 1
POL( -(x1, x2) ) = x1
POL( 0 ) = 0
R
↳OC
→TRS2
↳DPs
→DP Problem 1
↳UsableRules
→DP Problem 2
↳UsableRules
→DP Problem 3
↳UsableRules
...
→DP Problem 7
↳Dependency Graph
-(s(x), s(y)) -> -(x, y)
-(x, 0) -> x
-(0, s(y)) -> 0
innermost