Term Rewriting System R:
[x, y]
-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))

Termination of R to be shown.



   R
Overlay and local confluence Check



The TRS is overlay and locally confluent (all critical pairs are trivially joinable).Hence, we can switch to innermost.


   R
OC
       →TRS2
Dependency Pair Analysis



R contains the following Dependency Pairs:

-'(s(x), s(y)) -> -'(x, y)
F(s(x)) -> -'(s(x), g(f(x)))
F(s(x)) -> G(f(x))
F(s(x)) -> F(x)
G(s(x)) -> -'(s(x), f(g(x)))
G(s(x)) -> F(g(x))
G(s(x)) -> G(x)

Furthermore, R contains two SCCs.


   R
OC
       →TRS2
DPs
           →DP Problem 1
Usable Rules (Innermost)
           →DP Problem 2
Neg POLO


Dependency Pair:

-'(s(x), s(y)) -> -'(x, y)


Rules:


-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))


Strategy:

innermost




As we are in the innermost case, we can delete all 7 non-usable-rules.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
             ...
               →DP Problem 3
Size-Change Principle
           →DP Problem 2
Neg POLO


Dependency Pair:

-'(s(x), s(y)) -> -'(x, y)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. -'(s(x), s(y)) -> -'(x, y)
and get the following Size-Change Graph(s):
{1} , {1}
1>1
2>2

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1
2>2

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
s(x1) -> s(x1)

We obtain no new DP problems.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
Negative Polynomial Order


Dependency Pairs:

G(s(x)) -> G(x)
F(s(x)) -> F(x)
G(s(x)) -> F(g(x))
F(s(x)) -> G(f(x))


Rules:


-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))


Strategy:

innermost




The following Dependency Pairs can be strictly oriented using the given order.

G(s(x)) -> G(x)
F(s(x)) -> F(x)
F(s(x)) -> G(f(x))


Moreover, the following usable rules (regarding the implicit AFS) are oriented.

f(0) -> 0
-(s(x), s(y)) -> -(x, y)
g(0) -> s(0)
f(s(x)) -> -(s(x), g(f(x)))
-(0, s(y)) -> 0
-(x, 0) -> x
g(s(x)) -> -(s(x), f(g(x)))


Used ordering:
Polynomial Order with Interpretation:

POL( G(x1) ) = x1

POL( s(x1) ) = x1 + 1

POL( F(x1) ) = x1

POL( f(x1) ) = x1

POL( g(x1) ) = x1 + 1

POL( 0 ) = 0

POL( -(x1, x2) ) = x1


This results in one new DP problem.


   R
OC
       →TRS2
DPs
           →DP Problem 1
UsableRules
           →DP Problem 2
Neg POLO
             ...
               →DP Problem 4
Dependency Graph


Dependency Pair:

G(s(x)) -> F(g(x))


Rules:


-(x, 0) -> x
-(0, s(y)) -> 0
-(s(x), s(y)) -> -(x, y)
f(0) -> 0
f(s(x)) -> -(s(x), g(f(x)))
g(0) -> s(0)
g(s(x)) -> -(s(x), f(g(x)))


Strategy:

innermost




Using the Dependency Graph resulted in no new DP problems.

Termination of R successfully shown.
Duration:
0:00 minutes