R
↳Dependency Pair Analysis
PLUS(x, s(y)) -> PLUS(x, y)
TIMES(s(x), y) -> PLUS(times(x, y), y)
TIMES(s(x), y) -> TIMES(x, y)
P(s(s(x))) -> P(s(x))
FAC(s(x)) -> TIMES(fac(p(s(x))), s(x))
FAC(s(x)) -> FAC(p(s(x)))
FAC(s(x)) -> P(s(x))
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳MRR
PLUS(x, s(y)) -> PLUS(x, y)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳MRR
P(s(s(x))) -> P(s(x))
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳MRR
TIMES(s(x), y) -> TIMES(x, y)
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
|
|
trivial
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Modular Removal of Rules
FAC(s(x)) -> FAC(p(s(x)))
plus(x, 0) -> x
plus(x, s(y)) -> s(plus(x, y))
times(0, y) -> 0
times(x, 0) -> 0
times(s(x), y) -> plus(times(x, y), y)
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
fac(s(x)) -> times(fac(p(s(x))), s(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
POL(0) = 0 POL(FAC(x1)) = x1 POL(s(x1)) = x1 POL(p(x1)) = x1
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳MRR
→DP Problem 5
↳Modular Removal of Rules
FAC(s(x)) -> FAC(p(s(x)))
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
p(s(s(x))) -> s(p(s(x)))
p(s(0)) -> 0
POL(0) = 0 POL(FAC(x1)) = 1 + x1 POL(s(x1)) = 1 + x1 POL(p(x1)) = x1
p(s(0)) -> 0
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳MRR
→DP Problem 5
↳MRR
...
→DP Problem 6
↳Non-Overlappingness Check
FAC(s(x)) -> FAC(p(s(x)))
p(s(s(x))) -> s(p(s(x)))
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳MRR
→DP Problem 5
↳MRR
...
→DP Problem 7
↳Narrowing Transformation
FAC(s(x)) -> FAC(p(s(x)))
p(s(s(x))) -> s(p(s(x)))
innermost
one new Dependency Pair is created:
FAC(s(x)) -> FAC(p(s(x)))
FAC(s(s(x''))) -> FAC(s(p(s(x''))))
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳MRR
→DP Problem 5
↳MRR
...
→DP Problem 8
↳Negative Polynomial Order
FAC(s(s(x''))) -> FAC(s(p(s(x''))))
p(s(s(x))) -> s(p(s(x)))
innermost
FAC(s(s(x''))) -> FAC(s(p(s(x''))))
p(s(s(x))) -> s(p(s(x)))
POL( FAC(x1) ) = max{0, x1 - 1}
POL( s(x1) ) = x1 + 1
POL( p(x1) ) = max{0, x1 - 1}
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳MRR
→DP Problem 5
↳MRR
...
→DP Problem 9
↳Dependency Graph
p(s(s(x))) -> s(p(s(x)))
innermost