Term Rewriting System R:
[x, y]
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
ACTIVE(f(x)) -> F(active(x))
ACTIVE(f(x)) -> ACTIVE(x)
TOP(active(c)) -> TOP(mark(c))
TOP(mark(x)) -> TOP(check(x))
TOP(mark(x)) -> CHECK(x)
TOP(found(x)) -> TOP(active(x))
TOP(found(x)) -> ACTIVE(x)
CHECK(f(x)) -> F(check(x))
CHECK(f(x)) -> CHECK(x)
CHECK(x) -> START(match(f(X), x))
CHECK(x) -> MATCH(f(X), x)
CHECK(x) -> F(X)
MATCH(f(x), f(y)) -> F(match(x, y))
MATCH(f(x), f(y)) -> MATCH(x, y)
MATCH(X, x) -> PROPER(x)
PROPER(f(x)) -> F(proper(x))
PROPER(f(x)) -> PROPER(x)
F(ok(x)) -> F(x)
F(found(x)) -> F(x)
F(mark(x)) -> F(x)
Furthermore, R contains six SCCs.
R
↳DPs
→DP Problem 1
↳Size-Change Principle
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳MRR
Dependency Pairs:
F(mark(x)) -> F(x)
F(found(x)) -> F(x)
F(ok(x)) -> F(x)
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
We number the DPs as follows:
- F(mark(x)) -> F(x)
- F(found(x)) -> F(x)
- F(ok(x)) -> F(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
found(x1) -> found(x1)
mark(x1) -> mark(x1)
ok(x1) -> ok(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳MRR
Dependency Pair:
ACTIVE(f(x)) -> ACTIVE(x)
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
We number the DPs as follows:
- ACTIVE(f(x)) -> ACTIVE(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
f(x1) -> f(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳MRR
Dependency Pair:
PROPER(f(x)) -> PROPER(x)
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
We number the DPs as follows:
- PROPER(f(x)) -> PROPER(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
f(x1) -> f(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Size-Change Principle
→DP Problem 5
↳SCP
→DP Problem 6
↳MRR
Dependency Pair:
MATCH(f(x), f(y)) -> MATCH(x, y)
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
We number the DPs as follows:
- MATCH(f(x), f(y)) -> MATCH(x, y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
f(x1) -> f(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳Size-Change Principle
→DP Problem 6
↳MRR
Dependency Pair:
CHECK(f(x)) -> CHECK(x)
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
We number the DPs as follows:
- CHECK(f(x)) -> CHECK(x)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
f(x1) -> f(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳Modular Removal of Rules
Dependency Pairs:
TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
TOP(active(c)) -> TOP(mark(c))
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
top(active(c)) -> top(mark(c))
top(mark(x)) -> top(check(x))
top(found(x)) -> top(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
We have the following set of usable rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(active(x1)) | = x1 |
POL(proper(x1)) | = x1 |
POL(c) | = 0 |
POL(match(x1, x2)) | = x1 + x2 |
POL(X) | = 0 |
POL(check(x1)) | = x1 |
POL(found(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = x1 |
POL(ok(x1)) | = x1 |
POL(f(x1)) | = x1 |
POL(start(x1)) | = x1 |
We have the following set D of usable symbols: {proper, active, c, match, X, check, found, mark, TOP, ok, f, start}
No Dependency Pairs can be deleted.
3 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳MRR
→DP Problem 7
↳Negative Polynomial Order
Dependency Pairs:
TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
TOP(active(c)) -> TOP(mark(c))
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
start(ok(x)) -> found(x)
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
The following Dependency Pair can be strictly oriented using the given order.
TOP(active(c)) -> TOP(mark(c))
Moreover, the following usable rules (regarding the implicit AFS) are oriented.
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
Used ordering:
Polynomial Order with Interpretation:
POL( TOP(x1) ) = x1
POL( active(x1) ) = x1
POL( c ) = 1
POL( mark(x1) ) = 0
POL( found(x1) ) = x1
POL( check(x1) ) = 0
POL( f(x1) ) = 0
POL( start(x1) ) = x1
POL( match(x1, x2) ) = x1
POL( ok(x1) ) = x1
POL( X ) = 1
POL( proper(x1) ) = 1
This results in one new DP problem.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳MRR
→DP Problem 7
↳Neg POLO
...
→DP Problem 8
↳Modular Removal of Rules
Dependency Pairs:
TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
start(ok(x)) -> found(x)
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
We have the following set of usable rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
start(ok(x)) -> found(x)
match(f(x), f(y)) -> f(match(x, y))
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(active(x1)) | = x1 |
POL(proper(x1)) | = x1 |
POL(c) | = 0 |
POL(match(x1, x2)) | = x1 + x2 |
POL(X) | = 0 |
POL(check(x1)) | = 1 + x1 |
POL(found(x1)) | = x1 |
POL(mark(x1)) | = 1 + x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(f(x1)) | = 1 + x1 |
POL(start(x1)) | = x1 |
We have the following set D of usable symbols: {proper, active, c, match, X, check, found, mark, TOP, ok, f, start}
No Dependency Pairs can be deleted.
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:
match(f(x), f(y)) -> f(match(x, y))
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳MRR
→DP Problem 7
↳Neg POLO
...
→DP Problem 9
↳Modular Removal of Rules
Dependency Pairs:
TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
start(ok(x)) -> found(x)
match(X, x) -> proper(x)
proper(c) -> ok(c)
proper(f(x)) -> f(proper(x))
We have the following set of usable rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(active(x1)) | = x1 |
POL(match(x1, x2)) | = x1 + x2 |
POL(X) | = 0 |
POL(check(x1)) | = x1 |
POL(found(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = x1 |
POL(ok(x1)) | = x1 |
POL(f(x1)) | = x1 |
POL(start(x1)) | = x1 |
We have the following set D of usable symbols: {active, match, X, check, found, mark, TOP, ok, f, start}
No Dependency Pairs can be deleted.
4 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳MRR
→DP Problem 7
↳Neg POLO
...
→DP Problem 10
↳Modular Removal of Rules
Dependency Pairs:
TOP(found(x)) -> TOP(active(x))
TOP(mark(x)) -> TOP(check(x))
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
We have the following set of usable rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(active(x1)) | = x1 |
POL(match(x1, x2)) | = x1 + x2 |
POL(X) | = 0 |
POL(check(x1)) | = x1 |
POL(found(x1)) | = 1 + x1 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(f(x1)) | = x1 |
POL(start(x1)) | = x1 |
We have the following set D of usable symbols: {active, match, X, check, found, mark, TOP, ok, f, start}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
TOP(found(x)) -> TOP(active(x))
No Rules can be deleted.
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳MRR
→DP Problem 7
↳Neg POLO
...
→DP Problem 11
↳Modular Removal of Rules
Dependency Pair:
TOP(mark(x)) -> TOP(check(x))
Rules:
active(f(x)) -> mark(x)
active(f(x)) -> f(active(x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
We have the following set of usable rules:
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(match(x1, x2)) | = x1 + x2 |
POL(X) | = 0 |
POL(check(x1)) | = x1 |
POL(found(x1)) | = x1 |
POL(mark(x1)) | = x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(f(x1)) | = x1 |
POL(start(x1)) | = x1 |
We have the following set D of usable symbols: {match, X, check, found, mark, TOP, ok, f, start}
No Dependency Pairs can be deleted.
2 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳SCP
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳SCP
→DP Problem 5
↳SCP
→DP Problem 6
↳MRR
→DP Problem 7
↳Neg POLO
...
→DP Problem 12
↳Modular Removal of Rules
Dependency Pair:
TOP(mark(x)) -> TOP(check(x))
Rules:
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
We have the following set of usable rules:
check(f(x)) -> f(check(x))
check(x) -> start(match(f(X), x))
f(ok(x)) -> ok(f(x))
f(found(x)) -> found(f(x))
f(mark(x)) -> mark(f(x))
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(match(x1, x2)) | = x1 + x2 |
POL(X) | = 0 |
POL(check(x1)) | = x1 |
POL(found(x1)) | = x1 |
POL(mark(x1)) | = 1 + x1 |
POL(TOP(x1)) | = 1 + x1 |
POL(ok(x1)) | = x1 |
POL(f(x1)) | = x1 |
POL(start(x1)) | = x1 |
We have the following set D of usable symbols: {match, X, check, found, mark, TOP, ok, f, start}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
TOP(mark(x)) -> TOP(check(x))
No Rules can be deleted.
After the removal, there are no SCCs in the dependency graph which results in no DP problems which have to be solved.
Termination of R successfully shown.
Duration:
0:01 minutes