Term Rewriting System R:
[x, y, z]
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
Termination of R to be shown.
R
↳Dependency Pair Analysis
R contains the following Dependency Pairs:
PLUS(s(x), y) -> PLUS(x, y)
PLUS(s(x), y) -> PLUS(p(s(x)), y)
PLUS(s(x), y) -> P(s(x))
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
PLUS(x, s(y)) -> P(s(y))
TIMES(s(x), y) -> PLUS(y, times(x, y))
TIMES(s(x), y) -> TIMES(x, y)
DIV(x, y) -> QUOT(x, y, y)
DIV(div(x, y), z) -> DIV(x, times(y, z))
DIV(div(x, y), z) -> TIMES(y, z)
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
QUOT(x, 0, s(z)) -> DIV(x, s(z))
EQ(s(x), s(y)) -> EQ(x, y)
DIVIDES(y, x) -> EQ(x, times(div(x, y), y))
DIVIDES(y, x) -> TIMES(div(x, y), y)
DIVIDES(y, x) -> DIV(x, y)
PRIME(s(s(x))) -> PR(s(s(x)), s(x))
PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y))
PR(x, s(s(y))) -> DIVIDES(s(s(y)), x)
IF(false, x, y) -> PR(x, y)
Furthermore, R contains five SCCs.
R
↳DPs
→DP Problem 1
↳Modular Removal of Rules
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳AFS
→DP Problem 5
↳SCP
Dependency Pairs:
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
PLUS(s(x), y) -> PLUS(p(s(x)), y)
PLUS(s(x), y) -> PLUS(x, y)
Rules:
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
We have the following set of usable rules:
p(s(x)) -> x
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(PLUS(x1, x2)) | = 1 + x1 + x2 |
POL(s(x1)) | = x1 |
POL(p(x1)) | = x1 |
We have the following set D of usable symbols: {PLUS, s, p}
No Dependency Pairs can be deleted.
25 non usable rules have been deleted.
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 6
↳Modular Removal of Rules
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳AFS
→DP Problem 5
↳SCP
Dependency Pairs:
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
PLUS(s(x), y) -> PLUS(p(s(x)), y)
PLUS(s(x), y) -> PLUS(x, y)
Rule:
p(s(x)) -> x
We have the following set of usable rules:
p(s(x)) -> x
To remove rules and DPs from this DP problem we used the following monotonic and CE-compatible order: Polynomial ordering.
Polynomial interpretation:
POL(PLUS(x1, x2)) | = 1 + x1 + x2 |
POL(s(x1)) | = 1 + x1 |
POL(p(x1)) | = x1 |
We have the following set D of usable symbols: {PLUS, s, p}
The following Dependency Pairs can be deleted as the lhs is strictly greater than the corresponding rhs:
PLUS(s(x), y) -> PLUS(x, y)
The following rules can be deleted as the lhs is strictly greater than the corresponding rhs:
p(s(x)) -> x
The result of this processor delivers one new DP problem.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 6
↳MRR
...
→DP Problem 7
↳Dependency Graph
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳AFS
→DP Problem 5
↳SCP
Dependency Pairs:
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
PLUS(s(x), y) -> PLUS(p(s(x)), y)
Rule:
none
Using the Dependency Graph the DP problem was split into 1 DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 6
↳MRR
...
→DP Problem 8
↳Non-Overlappingness Check
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳AFS
→DP Problem 5
↳SCP
Dependency Pairs:
PLUS(s(x), y) -> PLUS(p(s(x)), y)
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
Rule:
none
R does not overlap into P. Moreover, R is locally confluent (all critical pairs are trivially joinable).Hence we can switch to innermost.
The transformation is resulting in one subcycle:
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 6
↳MRR
...
→DP Problem 9
↳Instantiation Transformation
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳AFS
→DP Problem 5
↳SCP
Dependency Pairs:
PLUS(s(x), y) -> PLUS(p(s(x)), y)
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
Rule:
none
Strategy:
innermost
On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule
PLUS(x, s(y)) -> PLUS(x, p(s(y)))
one new Dependency Pair
is created:
PLUS(p(s(x'')), s(y'')) -> PLUS(p(s(x'')), p(s(y'')))
The transformation is resulting in no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳Size-Change Principle
→DP Problem 3
↳SCP
→DP Problem 4
↳AFS
→DP Problem 5
↳SCP
Dependency Pair:
EQ(s(x), s(y)) -> EQ(x, y)
Rules:
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
We number the DPs as follows:
- EQ(s(x), s(y)) -> EQ(x, y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳SCP
→DP Problem 3
↳Size-Change Principle
→DP Problem 4
↳AFS
→DP Problem 5
↳SCP
Dependency Pair:
TIMES(s(x), y) -> TIMES(x, y)
Rules:
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
We number the DPs as follows:
- TIMES(s(x), y) -> TIMES(x, y)
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳Argument Filtering and Ordering
→DP Problem 5
↳SCP
Dependency Pairs:
DIV(div(x, y), z) -> DIV(x, times(y, z))
QUOT(x, 0, s(z)) -> DIV(x, s(z))
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
DIV(x, y) -> QUOT(x, y, y)
Rules:
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
The following dependency pair can be strictly oriented:
QUOT(s(x), s(y), z) -> QUOT(x, y, z)
There are no usable rules w.r.t. the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Precedence:
trivial
resulting in one new DP problem.
Used Argument Filtering System: DIV(x1, x2) -> x1
div(x1, x2) -> x1
QUOT(x1, x2, x3) -> x1
s(x1) -> s(x1)
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳AFS
→DP Problem 10
↳Argument Filtering and Ordering
→DP Problem 5
↳SCP
Dependency Pairs:
DIV(div(x, y), z) -> DIV(x, times(y, z))
QUOT(x, 0, s(z)) -> DIV(x, s(z))
DIV(x, y) -> QUOT(x, y, y)
Rules:
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
The following dependency pair can be strictly oriented:
DIV(div(x, y), z) -> DIV(x, times(y, z))
There are no usable rules w.r.t. the AFS that need to be oriented.
Used ordering: Lexicographic Path Order with Precedence:
trivial
resulting in one new DP problem.
Used Argument Filtering System: DIV(x1, x2) -> x1
div(x1, x2) -> div(x1, x2)
QUOT(x1, x2, x3) -> x1
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳AFS
→DP Problem 10
↳AFS
...
→DP Problem 11
↳Instantiation Transformation
→DP Problem 5
↳SCP
Dependency Pairs:
QUOT(x, 0, s(z)) -> DIV(x, s(z))
DIV(x, y) -> QUOT(x, y, y)
Rules:
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
On this DP problem, an Instantiation SCC transformation can be performed.
As a result of transforming the rule
DIV(x, y) -> QUOT(x, y, y)
one new Dependency Pair
is created:
DIV(x'', s(z'')) -> QUOT(x'', s(z''), s(z''))
The transformation is resulting in no new DP problems.
R
↳DPs
→DP Problem 1
↳MRR
→DP Problem 2
↳SCP
→DP Problem 3
↳SCP
→DP Problem 4
↳AFS
→DP Problem 5
↳Size-Change Principle
Dependency Pairs:
IF(false, x, y) -> PR(x, y)
PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y))
Rules:
p(0) -> 0
p(s(x)) -> x
plus(x, 0) -> x
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
plus(s(x), y) -> s(plus(p(s(x)), y))
plus(x, s(y)) -> s(plus(x, p(s(y))))
times(0, y) -> 0
times(s(0), y) -> y
times(s(x), y) -> plus(y, times(x, y))
div(0, y) -> 0
div(x, y) -> quot(x, y, y)
div(div(x, y), z) -> div(x, times(y, z))
quot(0, s(y), z) -> 0
quot(s(x), s(y), z) -> quot(x, y, z)
quot(x, 0, s(z)) -> s(div(x, s(z)))
eq(0, 0) -> true
eq(s(x), 0) -> false
eq(0, s(y)) -> false
eq(s(x), s(y)) -> eq(x, y)
divides(y, x) -> eq(x, times(div(x, y), y))
prime(s(s(x))) -> pr(s(s(x)), s(x))
pr(x, s(0)) -> true
pr(x, s(s(y))) -> if(divides(s(s(y)), x), x, s(y))
if(true, x, y) -> false
if(false, x, y) -> pr(x, y)
We number the DPs as follows:
- IF(false, x, y) -> PR(x, y)
- PR(x, s(s(y))) -> IF(divides(s(s(y)), x), x, s(y))
and get the following Size-Change Graph(s):
which lead(s) to this/these maximal multigraph(s):
DP: empty set
Oriented Rules: none
We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial
with Argument Filtering System:
s(x1) -> s(x1)
We obtain no new DP problems.
Termination of R successfully shown.
Duration:
0:02 minutes