Term Rewriting System R:
[x, y, z]
f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)

Innermost Termination of R to be shown.



   R
Dependency Pair Analysis



R contains the following Dependency Pairs:

F(0, 1, g(x, y), z) -> F(g(x, y), g(x, y), g(x, y), h(x))
F(0, 1, g(x, y), z) -> H(x)
H(g(x, y)) -> H(x)

Furthermore, R contains one SCC.


   R
DPs
       →DP Problem 1
Usable Rules (Innermost)


Dependency Pair:

H(g(x, y)) -> H(x)


Rules:


f(0, 1, g(x, y), z) -> f(g(x, y), g(x, y), g(x, y), h(x))
g(0, 1) -> 0
g(0, 1) -> 1
h(g(x, y)) -> h(x)


Strategy:

innermost




As we are in the innermost case, we can delete all 4 non-usable-rules.


   R
DPs
       →DP Problem 1
UsableRules
           →DP Problem 2
Size-Change Principle


Dependency Pair:

H(g(x, y)) -> H(x)


Rule:

none


Strategy:

innermost




We number the DPs as follows:
  1. H(g(x, y)) -> H(x)
and get the following Size-Change Graph(s):
{1} , {1}
1>1

which lead(s) to this/these maximal multigraph(s):
{1} , {1}
1>1

DP: empty set
Oriented Rules: none

We used the order Homeomorphic Embedding Order with Non-Strict Precedence.
trivial

with Argument Filtering System:
g(x1, x2) -> g(x1, x2)

We obtain no new DP problems.

Innermost Termination of R successfully shown.
Duration:
0:00 minutes