(0) Obligation:
The Runtime Complexity (full) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
f(f(0, x), 1) → f(g(f(x, x)), x)
f(g(x), y) → g(f(x, y))
Rewrite Strategy: FULL
(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)
The TRS does not nest defined symbols.
Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
f(f(0, x), 1) → f(g(f(x, x)), x)
(2) Obligation:
The Runtime Complexity (full) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
f(g(x), y) → g(f(x, y))
Rewrite Strategy: FULL
(3) RcToIrcProof (BOTH BOUNDS(ID, ID) transformation)
Converted rc-obligation to irc-obligation.
As the TRS does not nest defined symbols, we have rc = irc.
(4) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
f(g(x), y) → g(f(x, y))
Rewrite Strategy: INNERMOST
(5) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
g0(0) → 0
f0(0, 0) → 1
f1(0, 0) → 2
g1(2) → 1
g1(2) → 2
(6) BOUNDS(1, n^1)