(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0, 1, x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(g(x), y, z) →+ g(f(x, y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / g(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0', 1', x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(0', 1', x) → f(g(x), g(x), x)
f(g(x), y, z) → g(f(x, y, z))
f(x, g(y), z) → g(f(x, y, z))
f(x, y, g(z)) → g(f(x, y, z))
Types:
f :: 0':1':g → 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
TRS:
Rules:
f(
0',
1',
x) →
f(
g(
x),
g(
x),
x)
f(
g(
x),
y,
z) →
g(
f(
x,
y,
z))
f(
x,
g(
y),
z) →
g(
f(
x,
y,
z))
f(
x,
y,
g(
z)) →
g(
f(
x,
y,
z))
Types:
f :: 0':1':g → 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g
Generator Equations:
gen_0':1':g2_0(0) ⇔ 1'
gen_0':1':g2_0(+(x, 1)) ⇔ g(gen_0':1':g2_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_0':1':g2_0(
+(
1,
n4_0)),
gen_0':1':g2_0(
b),
gen_0':1':g2_0(
c)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
f(gen_0':1':g2_0(+(1, 0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c))
Induction Step:
f(gen_0':1':g2_0(+(1, +(n4_0, 1))), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) →RΩ(1)
g(f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c))) →IH
g(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
0',
1',
x) →
f(
g(
x),
g(
x),
x)
f(
g(
x),
y,
z) →
g(
f(
x,
y,
z))
f(
x,
g(
y),
z) →
g(
f(
x,
y,
z))
f(
x,
y,
g(
z)) →
g(
f(
x,
y,
z))
Types:
f :: 0':1':g → 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g
Lemmas:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':1':g2_0(0) ⇔ 1'
gen_0':1':g2_0(+(x, 1)) ⇔ g(gen_0':1':g2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
f(
0',
1',
x) →
f(
g(
x),
g(
x),
x)
f(
g(
x),
y,
z) →
g(
f(
x,
y,
z))
f(
x,
g(
y),
z) →
g(
f(
x,
y,
z))
f(
x,
y,
g(
z)) →
g(
f(
x,
y,
z))
Types:
f :: 0':1':g → 0':1':g → 0':1':g → 0':1':g
0' :: 0':1':g
1' :: 0':1':g
g :: 0':1':g → 0':1':g
hole_0':1':g1_0 :: 0':1':g
gen_0':1':g2_0 :: Nat → 0':1':g
Lemmas:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':1':g2_0(0) ⇔ 1'
gen_0':1':g2_0(+(x, 1)) ⇔ g(gen_0':1':g2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':1':g2_0(+(1, n4_0)), gen_0':1':g2_0(b), gen_0':1':g2_0(c)) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)