(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
h(f(x, y)) → f(y, f(h(h(x)), a))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
h(f(x, y)) →+ f(y, f(h(h(x)), a))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0].
The pumping substitution is [x / f(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
h(f(x, y)) → f(y, f(h(h(x)), a))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
h(f(x, y)) → f(y, f(h(h(x)), a))
Types:
h :: f:a → f:a
f :: f:a → f:a → f:a
a :: f:a
hole_f:a1_0 :: f:a
gen_f:a2_0 :: Nat → f:a
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
h
(8) Obligation:
TRS:
Rules:
h(
f(
x,
y)) →
f(
y,
f(
h(
h(
x)),
a))
Types:
h :: f:a → f:a
f :: f:a → f:a → f:a
a :: f:a
hole_f:a1_0 :: f:a
gen_f:a2_0 :: Nat → f:a
Generator Equations:
gen_f:a2_0(0) ⇔ a
gen_f:a2_0(+(x, 1)) ⇔ f(gen_f:a2_0(x), a)
The following defined symbols remain to be analysed:
h
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
h(
gen_f:a2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
h(gen_f:a2_0(+(1, 0)))
Induction Step:
h(gen_f:a2_0(+(1, +(n4_0, 1)))) →RΩ(1)
f(a, f(h(h(gen_f:a2_0(+(1, n4_0)))), a)) →IH
f(a, f(h(*3_0), a))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
h(
f(
x,
y)) →
f(
y,
f(
h(
h(
x)),
a))
Types:
h :: f:a → f:a
f :: f:a → f:a → f:a
a :: f:a
hole_f:a1_0 :: f:a
gen_f:a2_0 :: Nat → f:a
Lemmas:
h(gen_f:a2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f:a2_0(0) ⇔ a
gen_f:a2_0(+(x, 1)) ⇔ f(gen_f:a2_0(x), a)
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
h(gen_f:a2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
h(
f(
x,
y)) →
f(
y,
f(
h(
h(
x)),
a))
Types:
h :: f:a → f:a
f :: f:a → f:a → f:a
a :: f:a
hole_f:a1_0 :: f:a
gen_f:a2_0 :: Nat → f:a
Lemmas:
h(gen_f:a2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_f:a2_0(0) ⇔ a
gen_f:a2_0(+(x, 1)) ⇔ f(gen_f:a2_0(x), a)
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
h(gen_f:a2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)