* Step 1: ToInnermost WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: max(L(x)) -> x max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1} / {0/0,L/1,N/2,s/1} - Obligation: runtime complexity wrt. defined symbols {max} and constructors {0,L,N,s} + Applied Processor: ToInnermost + Details: switch to innermost, as the system is overlay and right linear and does not contain weak rules * Step 2: DependencyPairs WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: max(L(x)) -> x max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1} / {0/0,L/1,N/2,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {max} and constructors {0,L,N,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs max#(L(x)) -> c_1() max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(0()),L(y))) -> c_3() max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Weak DPs and mark the set of starting terms. * Step 3: UsableRules WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: max#(L(x)) -> c_1() max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(0()),L(y))) -> c_3() max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) - Weak TRS: max(L(x)) -> x max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) max#(L(x)) -> c_1() max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(0()),L(y))) -> c_3() max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) * Step 4: PredecessorEstimation WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: max#(L(x)) -> c_1() max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(0()),L(y))) -> c_3() max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1,3} by application of Pre({1,3}) = {2,4}. Here rules are labelled as follows: 1: max#(L(x)) -> c_1() 2: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) 3: max#(N(L(0()),L(y))) -> c_3() 4: max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) * Step 5: RemoveWeakSuffixes WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) - Weak DPs: max#(L(x)) -> c_1() max#(N(L(0()),L(y))) -> c_3() - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) -->_2 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):2 -->_1 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):2 -->_2 max#(N(L(0()),L(y))) -> c_3():4 -->_1 max#(N(L(0()),L(y))) -> c_3():4 -->_2 max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))):1 2:S:max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) -->_1 max#(N(L(0()),L(y))) -> c_3():4 -->_1 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):2 3:W:max#(L(x)) -> c_1() 4:W:max#(N(L(0()),L(y))) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: max#(L(x)) -> c_1() 4: max#(N(L(0()),L(y))) -> c_3() * Step 6: DecomposeDG WORST_CASE(?,O(n^2)) + Considered Problem: - Strict DPs: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) and a lower component max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) Further, following extension rules are added to the lower component. max#(N(L(x),N(y,z))) -> max#(N(y,z)) max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) ** Step 6.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) The strictly oriented rules are moved into the weak component. *** Step 6.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima): The following argument positions are considered usable: uargs(c_2) = {1,2} Following symbols are considered usable: {max#} TcT has computed the following interpretation: p(0) = [1] [0] p(L) = [0] [0] p(N) = [0 2] x2 + [0] [0 1] [1] p(max) = [1 1] x1 + [3] [1 2] [0] p(s) = [0] [0] p(max#) = [2 0] x1 + [0] [0 3] [0] p(c_1) = [0] [1] p(c_2) = [1 0] x1 + [1 0] x2 + [0] [0 0] [0 0] [2] p(c_3) = [0] [0] p(c_4) = [0 0] x1 + [0] [1 0] [0] Following rules are strictly oriented: max#(N(L(x),N(y,z))) = [0 4] z + [4] [0 3] [6] > [0 4] z + [0] [0 0] [2] = c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) Following rules are (at-least) weakly oriented: *** Step 6.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 6.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) -->_2 max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: max#(N(L(x),N(y,z))) -> c_2(max#(N(L(x),L(max(N(y,z))))),max#(N(y,z))) *** Step 6.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). ** Step 6.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) - Weak DPs: max#(N(L(x),N(y,z))) -> max#(N(y,z)) max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) The strictly oriented rules are moved into the weak component. *** Step 6.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) - Weak DPs: max#(N(L(x),N(y,z))) -> max#(N(y,z)) max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {max,max#} TcT has computed the following interpretation: p(0) = [5] p(L) = [1] x1 + [0] p(N) = [1] x2 + [0] p(max) = [1] x1 + [0] p(s) = [1] x1 + [4] p(max#) = [1] x1 + [1] p(c_1) = [0] p(c_2) = [4] x1 + [0] p(c_3) = [8] p(c_4) = [1] x1 + [1] Following rules are strictly oriented: max#(N(L(s(x)),L(s(y)))) = [1] y + [5] > [1] y + [2] = c_4(max#(N(L(x),L(y)))) Following rules are (at-least) weakly oriented: max#(N(L(x),N(y,z))) = [1] z + [1] >= [1] z + [1] = max#(N(y,z)) max#(N(L(x),N(y,z))) = [1] z + [1] >= [1] z + [1] = max#(N(L(x),L(max(N(y,z))))) max(N(L(x),N(y,z))) = [1] z + [0] >= [1] z + [0] = max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) = [1] y + [0] >= [1] y + [0] = y max(N(L(s(x)),L(s(y)))) = [1] y + [4] >= [1] y + [4] = s(max(N(L(x),L(y)))) *** Step 6.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: max#(N(L(x),N(y,z))) -> max#(N(y,z)) max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () *** Step 6.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: max#(N(L(x),N(y,z))) -> max#(N(y,z)) max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:max#(N(L(x),N(y,z))) -> max#(N(y,z)) -->_1 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):3 -->_1 max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))):2 -->_1 max#(N(L(x),N(y,z))) -> max#(N(y,z)):1 2:W:max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) -->_1 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):3 3:W:max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) -->_1 max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: max#(N(L(x),N(y,z))) -> max#(N(y,z)) 2: max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) 3: max#(N(L(s(x)),L(s(y)))) -> c_4(max#(N(L(x),L(y)))) *** Step 6.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) max(N(L(0()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) - Signature: {max/1,max#/1} / {0/0,L/1,N/2,s/1,c_1/0,c_2/2,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {max#} and constructors {0,L,N,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))