0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (ComplexityIfPolyImplication, 0 ms)
↳6 CdtProblem
↳7 CdtUsableRulesProof (⇔, 0 ms)
↳8 CdtProblem
↳9 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 45 ms)
↳10 CdtProblem
↳11 CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)), 2 ms)
↳12 CdtProblem
↳13 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 BOUNDS(1, 1)
g(0, f(x, x)) → x
g(x, s(y)) → g(f(x, y), 0)
g(s(x), y) → g(f(x, y), 0)
g(f(x, y), 0) → f(g(x, 0), g(y, 0))
As the TRS does not nest defined symbols, we have rc = irc.
g(0, f(x, x)) → x
g(x, s(y)) → g(f(x, y), 0)
g(s(x), y) → g(f(x, y), 0)
g(f(x, y), 0) → f(g(x, 0), g(y, 0))
Tuples:
g(0, f(z0, z0)) → z0
g(z0, s(z1)) → g(f(z0, z1), 0)
g(s(z0), z1) → g(f(z0, z1), 0)
g(f(z0, z1), 0) → f(g(z0, 0), g(z1, 0))
S tuples:
G(0, f(z0, z0)) → c
G(z0, s(z1)) → c1(G(f(z0, z1), 0))
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
K tuples:none
G(0, f(z0, z0)) → c
G(z0, s(z1)) → c1(G(f(z0, z1), 0))
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
g
G
c, c1, c2, c3
Removed 1 trailing nodes:
G(z0, s(z1)) → c1(G(f(z0, z1), 0))
G(0, f(z0, z0)) → c
Tuples:
g(0, f(z0, z0)) → z0
g(z0, s(z1)) → g(f(z0, z1), 0)
g(s(z0), z1) → g(f(z0, z1), 0)
g(f(z0, z1), 0) → f(g(z0, 0), g(z1, 0))
S tuples:
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
K tuples:none
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
g
G
c2, c3
g(0, f(z0, z0)) → z0
g(z0, s(z1)) → g(f(z0, z1), 0)
g(s(z0), z1) → g(f(z0, z1), 0)
g(f(z0, z1), 0) → f(g(z0, 0), g(z1, 0))
S tuples:
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
K tuples:none
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
G
c2, c3
We considered the (Usable) Rules:none
G(s(z0), z1) → c2(G(f(z0, z1), 0))
The order we found is given by the following interpretation:
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
POL(0) = 0
POL(G(x1, x2)) = x1 + x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(f(x1, x2)) = x1 + x2
POL(s(x1)) = [1] + x1
S tuples:
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
K tuples:
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
Defined Rule Symbols:none
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G
c2, c3
We considered the (Usable) Rules:none
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
The order we found is given by the following interpretation:
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
POL(0) = 0
POL(G(x1, x2)) = [3] + [3]x1 + [3]x2
POL(c2(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(f(x1, x2)) = [3] + x1 + x2
POL(s(x1)) = [3] + x1
S tuples:none
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
Defined Rule Symbols:none
G(s(z0), z1) → c2(G(f(z0, z1), 0))
G(f(z0, z1), 0) → c3(G(z0, 0), G(z1, 0))
G
c2, c3