(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(0, f(x, x)) → x
g(x, s(y)) → g(f(x, y), 0)
g(s(x), y) → g(f(x, y), 0)
g(f(x, y), 0) → f(g(x, 0), g(y, 0))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g(s(x), y) →+ f(g(x, 0), g(y, 0))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [y / 0].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
g(0', f(x, x)) → x
g(x, s(y)) → g(f(x, y), 0')
g(s(x), y) → g(f(x, y), 0')
g(f(x, y), 0') → f(g(x, 0'), g(y, 0'))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
g(0', f(x, x)) → x
g(x, s(y)) → g(f(x, y), 0')
g(s(x), y) → g(f(x, y), 0')
g(f(x, y), 0') → f(g(x, 0'), g(y, 0'))
Types:
g :: 0':f:s → 0':f:s → 0':f:s
0' :: 0':f:s
f :: 0':f:s → 0':f:s → 0':f:s
s :: 0':f:s → 0':f:s
hole_0':f:s1_0 :: 0':f:s
gen_0':f:s2_0 :: Nat → 0':f:s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
g
(8) Obligation:
TRS:
Rules:
g(
0',
f(
x,
x)) →
xg(
x,
s(
y)) →
g(
f(
x,
y),
0')
g(
s(
x),
y) →
g(
f(
x,
y),
0')
g(
f(
x,
y),
0') →
f(
g(
x,
0'),
g(
y,
0'))
Types:
g :: 0':f:s → 0':f:s → 0':f:s
0' :: 0':f:s
f :: 0':f:s → 0':f:s → 0':f:s
s :: 0':f:s → 0':f:s
hole_0':f:s1_0 :: 0':f:s
gen_0':f:s2_0 :: Nat → 0':f:s
Generator Equations:
gen_0':f:s2_0(0) ⇔ 0'
gen_0':f:s2_0(+(x, 1)) ⇔ f(0', gen_0':f:s2_0(x))
The following defined symbols remain to be analysed:
g
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
g(
gen_0':f:s2_0(
+(
1,
n4_0)),
gen_0':f:s2_0(
0)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
g(gen_0':f:s2_0(+(1, 0)), gen_0':f:s2_0(0))
Induction Step:
g(gen_0':f:s2_0(+(1, +(n4_0, 1))), gen_0':f:s2_0(0)) →RΩ(1)
f(g(0', 0'), g(gen_0':f:s2_0(+(1, n4_0)), 0')) →IH
f(g(0', 0'), *3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
g(
0',
f(
x,
x)) →
xg(
x,
s(
y)) →
g(
f(
x,
y),
0')
g(
s(
x),
y) →
g(
f(
x,
y),
0')
g(
f(
x,
y),
0') →
f(
g(
x,
0'),
g(
y,
0'))
Types:
g :: 0':f:s → 0':f:s → 0':f:s
0' :: 0':f:s
f :: 0':f:s → 0':f:s → 0':f:s
s :: 0':f:s → 0':f:s
hole_0':f:s1_0 :: 0':f:s
gen_0':f:s2_0 :: Nat → 0':f:s
Lemmas:
g(gen_0':f:s2_0(+(1, n4_0)), gen_0':f:s2_0(0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':f:s2_0(0) ⇔ 0'
gen_0':f:s2_0(+(x, 1)) ⇔ f(0', gen_0':f:s2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':f:s2_0(+(1, n4_0)), gen_0':f:s2_0(0)) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
g(
0',
f(
x,
x)) →
xg(
x,
s(
y)) →
g(
f(
x,
y),
0')
g(
s(
x),
y) →
g(
f(
x,
y),
0')
g(
f(
x,
y),
0') →
f(
g(
x,
0'),
g(
y,
0'))
Types:
g :: 0':f:s → 0':f:s → 0':f:s
0' :: 0':f:s
f :: 0':f:s → 0':f:s → 0':f:s
s :: 0':f:s → 0':f:s
hole_0':f:s1_0 :: 0':f:s
gen_0':f:s2_0 :: Nat → 0':f:s
Lemmas:
g(gen_0':f:s2_0(+(1, n4_0)), gen_0':f:s2_0(0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':f:s2_0(0) ⇔ 0'
gen_0':f:s2_0(+(x, 1)) ⇔ f(0', gen_0':f:s2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
g(gen_0':f:s2_0(+(1, n4_0)), gen_0':f:s2_0(0)) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)