0 CpxTRS
↳1 RcToIrcProof (BOTH BOUNDS(ID, ID), 13 ms)
↳2 CpxTRS
↳3 CpxTrsToCdtProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CdtProblem
↳5 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CdtProblem
↳7 CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CdtProblem
↳9 CdtUsableRulesProof (⇔, 0 ms)
↳10 CdtProblem
↳11 CdtNarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CdtProblem
↳13 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CdtProblem
↳15 CdtNarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CdtProblem
↳17 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 CdtProblem
↳19 CdtNarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳20 CdtProblem
↳21 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳22 CdtProblem
↳23 CdtUsableRulesProof (⇔, 0 ms)
↳24 CdtProblem
↳25 CdtNarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳26 CdtProblem
↳27 CdtLeafRemovalProof (BOTH BOUNDS(ID, ID), 0 ms)
↳28 CdtProblem
↳29 SIsEmptyProof (BOTH BOUNDS(ID, ID), 0 ms)
↳30 BOUNDS(1, 1)
f(0, 1, x) → f(h(x), h(x), x)
h(0) → 0
h(g(x, y)) → y
The duplicating contexts are:
f(0, 1, [])
The defined contexts are:
f([], x1, x2)
f(x0, [], x2)
[] just represents basic- or constructor-terms in the following defined contexts:
f([], x1, x2)
f(x0, [], x2)
As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc.
f(0, 1, x) → f(h(x), h(x), x)
h(0) → 0
h(g(x, y)) → y
Tuples:
f(0, 1, z0) → f(h(z0), h(z0), z0)
h(0) → 0
h(g(z0, z1)) → z1
S tuples:
F(0, 1, z0) → c(F(h(z0), h(z0), z0), H(z0), H(z0))
H(0) → c1
H(g(z0, z1)) → c2
K tuples:none
F(0, 1, z0) → c(F(h(z0), h(z0), z0), H(z0), H(z0))
H(0) → c1
H(g(z0, z1)) → c2
f, h
F, H
c, c1, c2
H(0) → c1
H(g(z0, z1)) → c2
Tuples:
f(0, 1, z0) → f(h(z0), h(z0), z0)
h(0) → 0
h(g(z0, z1)) → z1
S tuples:
F(0, 1, z0) → c(F(h(z0), h(z0), z0), H(z0), H(z0))
K tuples:none
F(0, 1, z0) → c(F(h(z0), h(z0), z0), H(z0), H(z0))
f, h
F
c
Tuples:
f(0, 1, z0) → f(h(z0), h(z0), z0)
h(0) → 0
h(g(z0, z1)) → z1
S tuples:
F(0, 1, z0) → c(F(h(z0), h(z0), z0))
K tuples:none
F(0, 1, z0) → c(F(h(z0), h(z0), z0))
f, h
F
c
f(0, 1, z0) → f(h(z0), h(z0), z0)
Tuples:
h(0) → 0
h(g(z0, z1)) → z1
S tuples:
F(0, 1, z0) → c(F(h(z0), h(z0), z0))
K tuples:none
F(0, 1, z0) → c(F(h(z0), h(z0), z0))
h
F
c
F(0, 1, 0) → c(F(h(0), 0, 0))
F(0, 1, g(z0, z1)) → c(F(h(g(z0, z1)), z1, g(z0, z1)))
F(0, 1, 0) → c(F(0, h(0), 0))
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
Tuples:
h(0) → 0
h(g(z0, z1)) → z1
S tuples:
F(0, 1, 0) → c(F(h(0), 0, 0))
F(0, 1, g(z0, z1)) → c(F(h(g(z0, z1)), z1, g(z0, z1)))
F(0, 1, 0) → c(F(0, h(0), 0))
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
K tuples:none
F(0, 1, 0) → c(F(h(0), 0, 0))
F(0, 1, g(z0, z1)) → c(F(h(g(z0, z1)), z1, g(z0, z1)))
F(0, 1, 0) → c(F(0, h(0), 0))
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
h
F
c
F(0, 1, 0) → c(F(h(0), 0, 0))
Tuples:
h(0) → 0
h(g(z0, z1)) → z1
S tuples:
F(0, 1, g(z0, z1)) → c(F(h(g(z0, z1)), z1, g(z0, z1)))
F(0, 1, 0) → c(F(0, h(0), 0))
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
K tuples:none
F(0, 1, g(z0, z1)) → c(F(h(g(z0, z1)), z1, g(z0, z1)))
F(0, 1, 0) → c(F(0, h(0), 0))
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
h
F
c
F(0, 1, g(z0, z1)) → c(F(z1, z1, g(z0, z1)))
Tuples:
h(0) → 0
h(g(z0, z1)) → z1
S tuples:
F(0, 1, 0) → c(F(0, h(0), 0))
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
F(0, 1, g(z0, z1)) → c(F(z1, z1, g(z0, z1)))
K tuples:none
F(0, 1, 0) → c(F(0, h(0), 0))
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
F(0, 1, g(z0, z1)) → c(F(z1, z1, g(z0, z1)))
h
F
c
F(0, 1, g(z0, z1)) → c(F(z1, z1, g(z0, z1)))
Tuples:
h(0) → 0
h(g(z0, z1)) → z1
S tuples:
F(0, 1, 0) → c(F(0, h(0), 0))
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
K tuples:none
F(0, 1, 0) → c(F(0, h(0), 0))
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
h
F
c
F(0, 1, 0) → c(F(0, 0, 0))
Tuples:
h(0) → 0
h(g(z0, z1)) → z1
S tuples:
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
F(0, 1, 0) → c(F(0, 0, 0))
K tuples:none
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
F(0, 1, 0) → c(F(0, 0, 0))
h
F
c
F(0, 1, 0) → c(F(0, 0, 0))
Tuples:
h(0) → 0
h(g(z0, z1)) → z1
S tuples:
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
K tuples:none
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
h
F
c
h(0) → 0
Tuples:
h(g(z0, z1)) → z1
S tuples:
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
K tuples:none
F(0, 1, g(z0, z1)) → c(F(z1, h(g(z0, z1)), g(z0, z1)))
h
F
c
F(0, 1, g(z0, z1)) → c(F(z1, z1, g(z0, z1)))
Tuples:
h(g(z0, z1)) → z1
S tuples:
F(0, 1, g(z0, z1)) → c(F(z1, z1, g(z0, z1)))
K tuples:none
F(0, 1, g(z0, z1)) → c(F(z1, z1, g(z0, z1)))
h
F
c
F(0, 1, g(z0, z1)) → c(F(z1, z1, g(z0, z1)))
Tuples:none
h(g(z0, z1)) → z1
h